Skip to main content
Log in

Optical microcrack sensor paints inspired by luminescent oxygen quenching phenomenon

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Luminescent oxygen sensor composed of platinum-porphyrin and a gas-permeable polymer binder was applied as an optical crack sensor paint for infrastructure. The sensor paints were designed as a three-layered structure in which the luminescent oxygen sensor layer was sandwiched between oxygen barrier layers. The sensor paints emitted intense luminescence under UV light irradiation, and the luminescence was efficiently quenched when a new crack formed on the concrete surface. Microcracks, which were <0.1 mm width and hardly visible to the naked eye, were clearly visualized under UV light irradiation due to the luminescent quenching caused by oxygen diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Chart 1
Figure 1
Figure 2
Table I
Figure 3
Table II
Figure 4
Figure 5

Similar content being viewed by others

References

  1. ISO: ISO 2394 General principles on reliability for structures, 73 (1998).

    Google Scholar 

  2. ISO: ISO 19338 Performance and assessment requirements for design standards on structural concrete, 12 (2003).

    Google Scholar 

  3. Road Maintenance in Japan; Problems and Solutions: Ministry of Land, Infrastructure, Transport and Tourism, Japan. http://www.mlit.go.jp/road/road_e/pdf/RoadMaintenance.pdf (accessed November 29, 2018).

    Google Scholar 

  4. S.L. James, C.J. Adams, C. Bolm, D. Braga, P. Collier, T. Friscic, F. Grepioni, K.D.M. Harris, G. Hyett, W. Jones, A. Krebs, J. Mack, L. Maini, A.G. Orpen, I.P. Parkin, W.C. Shearouse, J.W. Steed, and D.C. Waddell: Mechanochemistry: opportunities for new and cleaner synthesis. Chem. Soc. Rev. 41, 413 (2012).

    Article  CAS  Google Scholar 

  5. Kenry, J.C. Yeo, and C.T. Lim: Emergin flexible and wearable physical sensing platforms for health care and biomedical applications. Microsyst. Nanoeng. 2, 16043 (2016).

    Article  CAS  Google Scholar 

  6. S.R. White, N.R. Sottos, P.H. Geubelle, J.S. Moore, M.R. Kessler, S.R. Sriram, E.N. Brown, and S. Viswanathan: Autonomic healing of polymer composites. Nature 409, 794 (2001).

    Article  CAS  Google Scholar 

  7. M. Burnworth, L. Tang, J.R. Kumpfer, A.J. Duncan, F.L. Beyer, G.L. Fiore, S.J. Rowan, and C. Weder: Optically healable supramolecular polymers. Nature 472, 334 (2011).

    Article  CAS  Google Scholar 

  8. J.R. Capadona, K. Shanmuganathan, D.J. Tyler, S.J. Rowan, and C. Weder: Stimuli-responsive polymer nanocomposites inspired by the sea cucumber dermis. Science 319, 1370 (2008).

    Article  CAS  Google Scholar 

  9. Y. Sagara, S. Yamane, M. Mitani, C. Weder, and T. Kato: Mechanoresponsive luminescent molecular assemblies: an emerging class of materials. Adv. Mater. 28, 1073 (2016).

    Article  CAS  Google Scholar 

  10. M.M. Caruso, D.A. Davis, Q. Shen, S.A. Odom, N.R. Sottos, S.R. White, and J.S. Moore: Mechanically-induced chemical changes in polymeric materials. Chem. Rev. 109, 5755 (2009).

    Article  CAS  Google Scholar 

  11. X.D. Wang and O.S. Wolfbeis: Optical methods for sensing and imaging oxygen: materials, spectroscopies and applications. Chem. Soc. Rev. 43, 3666 (2014).

    Article  CAS  Google Scholar 

  12. T. Liu and J.P. Sullivan: Pressure and Temperature Sensitive Paints (Springer, Berlin, 2005).

    Google Scholar 

  13. Y. Amao: Probes and polymers for optical sensing of oxygen. Microchim. Acta 143, 1 (2003).

    Article  CAS  Google Scholar 

  14. L. Wang, H. Zhang, X. Zhou, Y. Liu, and B. Lei: Preparation and characterization of a luminescent carbon dots grafted CaSiO3:Eu3+ phosphor for ratiometric fluorescent oxygen sensing. RSC Adv. 6, 98554 (2016).

    Article  CAS  Google Scholar 

  15. M. Quaranta, S.M. Borisov, and I. Klimant: Indicators for optical oxygen sensors. Bioanal. Rev. 4, 115 (2012).

    Article  Google Scholar 

  16. B.G. MacLachian and J.H. Bell: Pressure-sensitive paint in aerodynamic testing. Exp. Therm Fluid Sci. 10, 470 (1995).

    Article  Google Scholar 

  17. T. Hyakutake, J. Kato, H. Taguchi, M. Watanabe, and H. Nishide: Luminescent multi layered polymer coating for simultaneous detection of oxygen pressure and temperature. Macromol. Chem. Phys. 210, 1230 (2009).

    Article  CAS  Google Scholar 

  18. H. Sakaue, T. Hayashi, and H. Ishikawa: Luminophore application study of polymer-ceramic pressure-sensitive paint. Sensors 13, 7053 (2013).

    Article  CAS  Google Scholar 

  19. J. Inukai, K. Miyatake, K. Takada, M. Watanabe, T. Hyakutake, H. Nishide, Y. Nagumo, M. Watanabe, M. Aoki, and H. Takano: Direct visualization of oxygen distribution in operating fuel cells. Angew. Chem. Int. Ed. 47, 2792 (2008).

    Article  CAS  Google Scholar 

  20. J. Inukai, K. Miyatake, Y. Ishigami, M. Watanabe, T. Hyakutake, H. Nishide, Y. Nagumo, M. Watanabe, and A. Tanaka: In situ and real-time visualisation of oxygen distribution in DMFC using a porphyrin dye compound. Chem. Commun. 0, 1750 (2008).

    Article  CAS  Google Scholar 

  21. T. Hyakutake, Y. Ishigami, J. Kato, J. Inukai, K. Miyatake, H. Nishide, and M. Watanabe: Luminescent oxygen-sensory polymer coating composed of platinumporphyrin and polytrimethylsilylpropyne for real-time visualization in operating polymer electrolyte fuel cells. Macromol. Chem. Phys. 212, 42 (2011).

    Article  CAS  Google Scholar 

  22. K. Nagai, T. Masuda, T. Nakagawa, B.D. Freeman, and I. Pinnau: Poly [1-(trimethylsilyl)-1-propyne] and related polymers: synthesis, properties and functions. Prog. Polym. Sci. 26, 721 (2001).

    Article  CAS  Google Scholar 

  23. T. Masuda, E. Isobe, T. Higashimura, and K. Takada: Poly [1-(trimethylsilyl)-1-propyne]: a new high polymer synthesized with transition-metal catalysts and characterized by extremely high gas permeability. J. Am. Chem. Soc. 105, 7473 (1983).

    Article  CAS  Google Scholar 

  24. S. Duan, T. Kai, T. Saito, K. Yamazaki,and K. Ikeda: Effect of cross-linking on the mechanical and thermal properties of poly(amidoamine) den-drimer/poly(vinyl alcohol) hybrid membranes for CO2 separation. Membranes (Basel) 4, 200 (2014).

    Article  Google Scholar 

  25. Japan Society of Civil Engineering: JSCE K-532-2010 Crack elongation test methods for surface coating material (2010).

    Google Scholar 

  26. B.D. MacCraith, C.M. MacDonagh, G. O’Keeffe, E.T. Keyes, J.G. Vos, B. O’Kelly, and J.F. MacGilp: Fibre optic oxygen sensor based on fluorescence quenching of evanescent-wave excited ruthenium complexes in sol-gel derived porous coatings. Analyst 118, 385 (1993).

    Article  CAS  Google Scholar 

  27. Japan Society of Civil Engineers: Guidelines for Concrete, Standard Specifications for Concrete Structures - 2013 “Maintenance”.

    Google Scholar 

Download references

Acknowledgment

This work was partially supported by JSPS Grant-in-Aid for Young Scientists (A) 30468871, (B) 22760334, and the Maeda Engineering Foundation Grant. The author thanks Prof. H. Sakaue and Dr. K. Morita for their discussions regarding this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsuyoshi Hyakutake.

Supplementary material

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2019.38

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hyakutake, T., Nitta, H. & Nishizaki, I. Optical microcrack sensor paints inspired by luminescent oxygen quenching phenomenon. MRS Communications 9, 737–743 (2019). https://doi.org/10.1557/mrc.2019.38

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2019.38

Navigation