Skip to main content
Log in

Scanning thermal probe calibration for accurate measurement of thermal conductivity of ultrathin films

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Scanning thermal microscopy allows thermal characterization with nanoscale resolution. However, quantitative usage has been met with skepticism, because no standard exists for calibrating probe–sample thermal exchange. In this paper, three published strategies for calibrating probe–sample thermal exchange are directly compared, then used to measure bulk and thin-film thermal conductivity. It is shown that with an appropriately calibrated probe and film-on-substrate heat conduction model, thermal conductivity values of ultrathin-film (2.9–202 nm) Al2O3 on silicon are within 20% deviation of independently measured values, while more commonly used methods yield values that may deviate by more a factor of two.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Table II

Similar content being viewed by others

References

  1. D.G. Cahill, P.V. Braun, G. Chen, D.R. Clarke, S. Fan, K.E. Goodson, P. Keblinski, W.P. King, G.D. Mahan, A. Majumdar, H.J. Maris, S.R. Phillpot, E. Pop, and L. Shi: Nanoscale thermal transport. II. 2003–2012. Appl. Phys. Rev. 1, 011305 (2014).

    Article  Google Scholar 

  2. M.H. Kryder, E.C. Gage, T.W. McDaniel, W.A. Challener, R.E. Rottmayer, J. Ganping, H. Yiao-Tee, and M.F. Erden: Heat assisted magnetic recording. Proc. IEEE 96, 1810–1835 (2008).

    Article  CAS  Google Scholar 

  3. G.J. Snyder and E.S. Toberer: Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008).

    Article  CAS  Google Scholar 

  4. B. Abad, D.A. Borca-Tasciuc, and M.S. Martin-Gonzalez: Non-contact methods for thermal properties measurement. Renewable Sustainable Energy Rev. 76, 1348–1370 (2017).

    Article  Google Scholar 

  5. J. Juszczyk, A. Kazmierczak-Balata, P. Firek, and J. Bodzenta: Measuring thermal conductivity of thin films by scanning thermal microscopy combined with thermal spreading resistance analysis. Ultramicroscopy 175, 81–86 (2017).

    Article  CAS  Google Scholar 

  6. A.A. Wilson: Analysis of non-contact and contact probe-to-sample thermal exchange for quantitative measurements of thin film and nanostructure thermal conductivity by the scanning hot probe method. Doctor of Philosophy Dissertation, Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA, 2017.

    Google Scholar 

  7. A.A. Wilson and T. Borca-Tasciuc: Quantifying non-contact tip-sample thermal exchange parameters for accurate scanning thermal microscopy with heated microprobes. Rev. Sci. Instrum. 88, 074903 (2017).

    Article  Google Scholar 

  8. A.A. Wilson, M. Munoz Rojo, B. Abad, J.A. Perez, J. Maiz, J. Schomacker, M. Martin-Gonzalez, D. A. Borca-Tasciuc, and T. Borca-Tasciuc: Thermal conductivity measurements of high and low thermal conductivity films using a scanning hot probe method in the 3omega mode and novel calibration strategies. Nanoscale 7, 15404–15412 (2015).

    Article  CAS  Google Scholar 

  9. M.E. DeCoster, K.E. Meyer, B.D. Piercy, J.T. Gaskins, B.F. Donovan, A. Giri, N.A. Strnad, D.M. Potrepka, A.A. Wilson, M.D. Losego, and P.E. Hopkins: Density and size effects on the thermal conductivity of atomic layer deposited TiO 2 and Al 2 O 3 thin films. Thin Solid Films 650, 71–77 (2018).

    Article  CAS  Google Scholar 

  10. V.V. Gorbunov, N. Fuchigami, J.L. Hazel, and V.V. Tsukruk: Probing surface microthermal properties by scanning thermal microscopy. Langmuir 15, 8340–8343 (1999).

    Article  CAS  Google Scholar 

  11. S. Lefèvre, S. Volz, J.-B. Saulnier, C. Fuentes, and N. Trannoy: Thermal conductivity calibration for hot wire based dc scanning thermal microscopy. Rev. Sci. Instrum. 74, 2418–2423 (2003).

    Article  Google Scholar 

  12. A.A. Wilson, T. Borca-Tasciuc, H. Wang, and C. Yu: Thermal conductivity of double-wall carbon nanotube-polyanaline composites measured by a non-contact scanning hot probe technique. In IEEE 16th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, Orlando, FL, USA, 2017, p. 456.

    Google Scholar 

  13. A.A. Wilson, M. Graziano, M. Rivas, D. Baker, and B. Hanrahan: Effective thermal conductivity of iridium oxide nanostructures by a combined noncontact and contact mode scanning hot probe technique. In Electronic and Advanced Materials Conference, Orlando, FL, USA, 2018.

    Google Scholar 

  14. A. Makris, T. Haeger, R. Heiderhoff, and T. Riedl: From diffusive to ballistic Stefan–Boltzmann heat transport in thin non-crystalline films. RSC Adv. 6, 94193–94199 (2016).

    Article  CAS  Google Scholar 

  15. R. Heiderhoff, T. Haeger, K. Dawada, and T. Riedl: From diffusive in-plane to ballistic out-of-plane heat transport in thin non-crystalline films. Microelectron. Reliab. 76–77, 222–226 (2017).

    Article  Google Scholar 

  16. A.M. Massoud, J.M. Bluet, V. Lacatena, M. Haras, J.F. Robillard, and P.O. Chapuis: Native-oxide limited cross-plane thermal transport in suspended silicon membranes revealed by scanning thermal microscopy. Appl. Phys. Lett. 111, 063106 (2017).

    Article  Google Scholar 

  17. J. Chung, K. Kim, G. Hwang, O. Kwon, S. Jung, J. Lee, J.W. Lee, and G.T. Kim: Quantitative temperature measurement of an electrically heated carbon nanotube using the null-point method. Rev. Sci. Instrum. 81, 114901 (2010).

    Article  Google Scholar 

  18. K. Kim, J. Chung, G. Hwang, O. Kwon, and J. Lee: Quantitative measurement with scanning thermal microscope by preventing the distortion due to the heat transfer through the air. ACS Nano 5, 8700–8709 (2011).

    Article  CAS  Google Scholar 

  19. K. Kim, J. Chung, J. Won, O. Kwon, J.S. Lee, S.H. Park, and Y.K. Choi: Quantitative scanning thermal microscopy using double scan technique. Appl. Phys. Lett. 93, 203115 (2008).

    Article  Google Scholar 

  20. S. Lefèvre, J.B. Saulnier, C. Fuentes, and S. Volz: Probe calibration of the scanning thermal microscope in the AC mode. Superlattices Microstruct. 35, 283–288 (2004).

    Article  Google Scholar 

  21. C.J. Glassbrenner and G.A. Slack: Thermal conductivity of silicon and germanium from 3°K to the melting point. Phys. Rev. 134, A1058–A1069 (1964).

    Article  Google Scholar 

  22. A. Kaźmierczak-Bałata, J. Bodzenta, M. Krzywiecki, J. Juszczyk, J. Szmidt, and P. Firek: Application of scanning microscopy to study correlation between thermal properties and morphology of BaTiO3 thin films. Thin Solid Films 545, 217–221 (2013).

    Article  Google Scholar 

  23. E. Puyoo, S. Grauby, J.M. Rampnoux, E. Rouviere, and S. Dilhaire: Thermal exchange radius measurement: application to nanowire thermal imaging. Rev. Sci. Instrum. 81, 073701 (2010).

    Article  Google Scholar 

  24. Y. Zhang, C.L. Hapenciuc, E.E. Castillo, T. Borca-Tasciuc, R.J. Mehta, C. Karthik, and G. Ramanath: A microprobe technique for simultaneously measuring thermal conductivity and Seebeck coefficient of thin films. Appl. Phys. Lett. 96, 062107 (2010).

    Article  Google Scholar 

  25. E. Puyoo, S. Grauby, J.-M. Rampnoux, E. Rouvière, and S. Dilhaire: Scanning thermal microscopy of individual silicon nanowires. J. Appl. Phys. 109, 024302 (2011).

    Article  Google Scholar 

  26. Y. Zhang, E.E. Castillo, R.J. Mehta, G. Ramanath, and T. Borca-Tasciuc: A noncontact thermal microprobe for local thermal conductivity measurement. Rev. Sci. Instrum. 82, 024902 (2011).

    Article  Google Scholar 

  27. R. Dryden: Effect of a surface coating on the constriction resistance of a spot in an infinite half-plane. J. Heat Transfer 105, 408–410 (1983).

    Article  Google Scholar 

  28. T.-L. Li and S.L.-C. Hsu: Enhanced thermal conductivity of polyimide films via a hybrid of micro- and nano-sized boron nitride. J. Phys. Chem. B 114, 6825–6829 (2010).

    Article  CAS  Google Scholar 

  29. I. Williams and R. Shawyer: Certification Report for a Pyrex Glass Reference Material for Thermal Conductivity between-75° C and 195° C. Commission of the European Communities, 1991.

    Google Scholar 

Download references

Acknowledgments

This work was performed while the author held an NRC Research Associateship award at the US Army Research Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam A. Wilson.

Supplementary material

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2019.37

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilson, A.A. Scanning thermal probe calibration for accurate measurement of thermal conductivity of ultrathin films. MRS Communications 9, 650–656 (2019). https://doi.org/10.1557/mrc.2019.37

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2019.37

Navigation