Skip to main content
Log in

Dynamic covalent hexahydrotriazine breakdown through nucleophilic attack by phosphine

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

In the current manuscript we discuss the response of dynamic metallogels that display reversion to the liquid state when exposed to phosphines. The metallogels are formed through the condensation of formaldehyde and poly(alkyloxide)amines in polar aprotic solvents. The gel formation can be catalyzed with trivalent metals (Al(III and Fe(III)) with concomitant enhanced dynamism (gelation/degelation). When various phosphines are introduced, the metallogel is irreversibly liquefied. This process adds a new vector for controlling the bulk properties of this class of materials. Here, we explore the mechanism in detail for the reaction of tris(carboxyethyl)phosphine with N,N,N-triethoxylethyl-1,3,5-hexahydro-1,3,5-triazine (HEHT, 1) a stable derivative of the active hexahydrotriazine (HT) core in dimethylformamide in the presence or absence of Al(III). Additionally, density functional theory is used on the model N,N,N-trimethyl system (MHT, 2) to estimate reaction parameters and predict nuclear magnetic resonance spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Scheme 1
Figure 2
Figure 3
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Y. Jin, C. Yu, R.J. Denman, and W. Zhang: Recent advances in dynamic covalent chemistry. Chem. Soc. Rev. 42, 6634 (2013).

    Article  CAS  Google Scholar 

  2. B. Buchs, G. Guillaume, A. Trachsel, J.-Y. de Saint Laumer, J.-M. Lehn, and A. Hermann: Reversible aminal formation: controlling the evaporation of bioactive volatiles by dynamic combinatorial/covalent chemistry. Eur. J. Org. Chem. 4, 681 (2011).

    Article  Google Scholar 

  3. A. Herrmann, N. Giuseppone, and J.-M. Lehn: Electric-field triggered controlled release of bioactive volatiles from imine-based liquid crystalline phases. Chem. Eur. J. 15, 117 (2008).

    Article  Google Scholar 

  4. X. de Hatten, N. Bell, N. Yufa, G. Christmann, and J.R. Nitschke: A dynamic covalent, luminescent metallopolymer that undergoes sol-to-gel transition on temperature rise. J. Am. Chem. Soc. 133, 3158 (2011).

    Article  Google Scholar 

  5. J.-M. Lehn: Perspectives in chemistry-aspects of adaptive chemistry and materials. Angew. Chem. Int. Ed. 54, 3276–3289 (2015).

    Article  CAS  Google Scholar 

  6. J.-F. Xu, Y.-Z. Chen, L.-Z. Wu, C.-H. Tung, and Q.-Z. Yang: Dynamic covalent bond based on Reversible photo [4+4] cycloaddition of anthracene for construction of double-dynamic polymers. Org. Lett. 15, 6148 (2013).

    Article  CAS  Google Scholar 

  7. N. Giuseppone, and J.-M. Lehn: Electric-field modulation of component exchange in constitutional dynamic liquid crystals. Angew. Chem. 118, 4735 (2006).

    Article  Google Scholar 

  8. Y. Jin, L. Song, Y. Su, L. Zhu, Y. Pang, F. Qiu, G. Tong, D. Yan, B. Zhu, and X. Zhu: Oxime linkage: a robust tool for the design of pH-sensitive polymeric drug carriers. Biomacromolecules 12, 3460 (2011).

    Article  CAS  Google Scholar 

  9. G. Vantomme, and J.-M. Lehn: Photo- and thermoresponsive supramolecular assemblies: reversible photorelease of K+ ions and constitutional dynamics. Angew. Chem. Int. Ed. 52, 3940 (2013).

    Article  CAS  Google Scholar 

  10. T. Ono, S. Fujii, T. Nobori, and J.-M. Lehn: Optodynamers: expression of color and fluorescence at the interface between two films of different dynamic polymers. Chem. Commun. 46, 46–48 (2007).

    Article  Google Scholar 

  11. G. Deng, F. Li, H. Yu, F. Liu, C. Liu, W. Sun, H. Jiang, and Y. Chen: Dynamic hydrogels with an environmental adaptive self-healing ability and dual responsive sol-gel transitions. ACS Macro Lett. 1, 275–279 (2012).

    Article  CAS  Google Scholar 

  12. J.-M. Lehn: Dynamers: dynamic molecular and supramolecular polymers. Prog. Polym. Sci. 30, 814 (2005).

    Article  CAS  Google Scholar 

  13. S. Otto: Dynamic molecular networks: from synthetic receptors to selfreplicators. Acc. Chem. Res. 45, 2200 (2012).

    Article  CAS  Google Scholar 

  14. D.E. Whitaker, C.S. Mahon, and D.A. Fulton: Thermo-responsive dynamic covalent single-chain polymer nanoparticles reversibly transform into a hydrogel. Angew. Chem. Int. Ed. 52, 956 (2013).

    Article  CAS  Google Scholar 

  15. R.J. Wojtecki, M.A. Meador, and S.J. Rowan: Using the dynamic bond to access macroscopically responsive structurally dynamic polymers. Nat. Mater. 10, 14 (2011).

    Article  CAS  Google Scholar 

  16. P. Reutenauer, E. Buhler, P.J. Boul, S.J. Candau, and J.-M. Lehn: Room temperature dynamic polymers based on Diels–Alder chemistry. Chem.–Eur. J. 15, 1893 (2009).

    Article  CAS  Google Scholar 

  17. X. Chen, M.A. Dam, K. Ono, A. Mal, H. Shen, S.R. Nutt, K. Sheran, and F. Wudl: A thermally re-mendable cross-linked polymeric material. Science 295, 1698 (2002).

    Article  CAS  Google Scholar 

  18. T. Bunyapaiboonsri, O. Ramström, S. Lohmann, J.-M. Lehn, L. Peng, and M. Goeldner: Dynamic deconvolution of a pre-equilibrated dynamic combinatorial library of acetylcholinesterase inhibitors. ChemBioChem 2, 438 (2001).

    Article  CAS  Google Scholar 

  19. L.M. Hayden, W.K. Kim, A.P. Chafin, and G.A. Lindsay: Synthesis and nonlinear optical properties of a new syndioregic main chain hydrazine polymer. Macromolecules 34, 1493 (2001).

    Article  CAS  Google Scholar 

  20. J.-L. Schmitt and J.-M. Lehn: Self-assembly of non-biological polymeric strands undergoing enforced helical self-organization. Helv. Chim. Acta 86, 3417 (2003).

    Article  CAS  Google Scholar 

  21. H. Yang, Y. Zhang, and J. Cheng: Dynamic urea bond for the design of reversible and self-healing polymers. Nat. Commun. 5, 3218 (2014).

    Article  Google Scholar 

  22. R. Nguyen and I. Huc: Optimizing the reversibility of hydrazine formation for dynamic combinatorial chemistry. Chem. Commun. 942, 942–943 (2003).

    Article  Google Scholar 

  23. R.L.E. Furlan, G.R.L. Cousins, and J.K.M. Sanders: Molecular amplification in a dynamic combinatorial library using non-covalent interactions. Chem. Commun. 18, 1761 (2000).

    Article  Google Scholar 

  24. D. Montarnal, M. Capelot, F. Tournilhac, and L. Leibler: Silica-like malleable materials from permanent organic networks. Science 334, 965 (2011).

    Article  CAS  Google Scholar 

  25. H.R. Kricheldorf: Macrocycles. 21. Role of ring-ring equilibria in thermodynamically controlled polycondensations. Macromolecules 36, 2302 (2003).

    Article  CAS  Google Scholar 

  26. H.M. Colquhoun, D.F. Lewis, A. Ben-Haida, and P. Hodge: Ring-chain interconversion in high-performance polymer systems. 2. Ring-opening polymerization-copolyetherification in the synthesis of aromatic poly (ether sulfones). Macromolecules 36, 3775 (2003).

    Article  CAS  Google Scholar 

  27. T.F. Scott, A.D. Schneider, W.D. Cook, and C.N. Bowman: Photoinduced plasticity in cross-linked polymers. Science 308, 1615 (2005).

    Article  CAS  Google Scholar 

  28. O.R. Cromwell, J. Chung, and Z. Guan: Malleable and self-healing covalent polymer networks through tunable dynamic boronic ester bonds. J. Am. Chem. Soc. 137, 6492 (2015).

    Article  CAS  Google Scholar 

  29. C.H. Fox, G.M. ter Huurrne, R.J. Wojtecki, G.O. Jones, H.W. Horn, E.W. Meijer, C.W. Frank, J.L. Hedrick, and J.M. Garcia: Supramolecular motifs in dynamic covalent PEG-hemiaminal organogels. Nat. Commun. 15, 7417 (2015).

    Article  Google Scholar 

  30. J.M. García, G.O. Jones, K. Virwani, B.D. McCloskey, D.J. Boday, G.M. ter Huurne, H.W. Horn, D.J. Coady, A.M. Bintaleb, A.M.S. Alabdulrahman, F. Alsewailem, H.A.A. Almegren, and J.L. Hedrick: Recyclable, strong thermosets and organogels via paraformaldehyde condensation with diamines. Science 344, 732 (2014).

    Article  Google Scholar 

  31. R.J. Wojtecki, G.O. Jones, A.Y. Yuen, W. Chin, D.J. Boday, A. Nelson, J.M. García, Y.Y. Yang, and J.L. Hedrick: Developments in dynamic covalent chemistries from the reaction of thiols with hexahydrotriazines. J. Am. Chem. Soc. 137, 14248 (2015).

    Article  CAS  Google Scholar 

  32. J.M. Bakke, J. Buhaug, and J. Riha: Hydrolysis of 1,3,5-tris(2-hydroxyethyl) hexahydro-s-triazine and Its Reaction with H2S. Ind. Eng. Chem. Res. 40, 6051–6054 (2001).

    Article  CAS  Google Scholar 

  33. P.J. Boul, P.D. Jarowski, and C.J. Thaemlitz: Phase change transformations with dynamically addressable aminal metallogels. J. Am. Chem. Soc. 139, 15385 (2017).

    Article  CAS  Google Scholar 

  34. P.J. Boul, D. Rasner, and C.J. Thaemlitz: Constitutionally dynamic oil well construction fluids-metalloaminal chemistry. Ind. Eng. Chem. Res. 57, 17043 (2018).

    Article  CAS  Google Scholar 

  35. W.A. Henderson, and S.A. Buckler: The nucleophilicity of phosphines. J. Am. Chem. Soc. 82, 5794–5800 (1960).

    Article  CAS  Google Scholar 

  36. H.R. Hudson: Nucleophilic reactions of phosphines. In The Chemistry of Organophosphorus Compounds, vol. 1, edited by F.R. Hartley (John Wiley & Sons, Chichester, 1990), pp. 385–471.

    CAS  Google Scholar 

  37. J.L. Methot, and W.R. Roush: Nucleophilic phosphine organocatalysis. Adv. Synth. Catal. 346, 1035 (2004).

    Article  CAS  Google Scholar 

  38. M. Myers, E.F. Connor, T. Glauser, A. Möck, G. Nyce, and J.L. Hedrick: Phosphines: nucleophilic organic catalysts for the controlled ringopening polymerization of lactides. J. Polym. Sci: Part A:Polym. Chem. 40, 844–851 (2002).

    Article  CAS  Google Scholar 

  39. T.L. Breen, and D.W. Stephan: Substitution or nucleophilic attack by phosphines on ZrCl4(THF)2. Inorg. Chem. 31, 4019 (1992).

    Article  CAS  Google Scholar 

  40. G.O. Jones, J.M. Garcia, H.W. Horn, and J.L. Hedrick: Computational and experimental studies on the mechanism of formation of poly(hexahydrotriazine) s and poly(hemiaminal)s from the reactions of amines with formaldehyde. Org. Lett. 16, 5502 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Aramco for permission to publish this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Boul.

Appendices

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2019.33

Conflict of interest

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boul, P.J., Rasner, D.K., Jarowski, P.D. et al. Dynamic covalent hexahydrotriazine breakdown through nucleophilic attack by phosphine. MRS Communications 9, 644–649 (2019). https://doi.org/10.1557/mrc.2019.33

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2019.33

Navigation