Skip to main content
Log in

Convolutional neural networks for grazing incidence x-ray scattering patterns: thin film structure identification

  • Artificial Intelligence Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Nano-structured thin films have a variety of applications from waveguides, gaseous sensors to piezoelectric devices. Grazing Incidence Small Angle x-ray Scattering images enable classification of such materials. One challenge is to determine structure information from scattering patterns alone. This paper highlights the design of multiple Convolutional Neural Networks (CNN) to classify nanoparticle orientation in a thin film by learning scattering patterns. The network was trained on several thin films with a success rate of 94%. We demonstrate CNN robustness under different noises as well as demonstrate the potential of our proposed approach as a strategy to decrease scattering pattern analysis time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Table I.
Figure 2
Figure 3
Figure 4
Table II.
Table III.
Figure 5
Figure 6

Similar content being viewed by others

References

  1. A. Dong, J. Chen, P.M. Vora, J.M. Kikkawa, and C.B. Murray: Binary nanocrystal superlattice membrane self-assembled at the liquid-air interface. Nature 466 474 (2010).

    Article  CAS  Google Scholar 

  2. G. Renaud, R. Lazzari, and F. Leroy: Probing surface and interface morphology with Grazing Incidence Small Angle X-Ray Scattering. Surf. Sci. Rep. 64, 255–380 (2009).

    Article  CAS  Google Scholar 

  3. A. Hexemer and P. Müller-Buschbaum: Advanced grazing-incidence techniques for modern soft-matter materials analysis. IUCrJ 2, 106–125 (2015).

    Article  CAS  Google Scholar 

  4. T.E. Williams, D. Ushizima, C. Zhu, A. Anders, D.J. Milliron, and B.A. Helms: Nearest-neighbor nanocrystal bonding dictates framework stability or collapse in colloidal nanocrystal frameworks. Chem. Commun. 53, 4853–4856 (2017).

    Article  CAS  Google Scholar 

  5. D. Smilgies: GISAXS–Grazing-Incidence Small-Angle Scattering. The SAXS Guide, 4th ed. (Anton Paar GmbH., Austria, 2017), pp. 109–123.

    Google Scholar 

  6. G.H. Vineyard: Grazing-incidence diffraction and the distorted-wave approximation for the study of surfaces. Phys. Rev. B 26, 4146–4159 (1982).

    Article  CAS  Google Scholar 

  7. S.K. Sinha, E.B. Sirota, S. Garoff, and H.B. Stanley: X-ray and neutron scattering from rough surfaces. Phys. Rev. B 38, 2297–2311 (1988).

    Article  CAS  Google Scholar 

  8. H. Deyhle, S.N. White, L. Botta, M. Liebi, M. Guizar-Sicairos, O. Bunk, and B. Müller: Automated analysis of spatially resolved x-ray scattering and micro computed tomography of artificial and natural enamel carious lesions. J. Imaging 4, 81 (2018).

    Article  Google Scholar 

  9. C. E. Rasmussen: Gaussian processes in machine learning Advanced lectures in machine learning (Springer 2014) pp. 63–71.

    Google Scholar 

  10. J. Snoek, H. Larochelle, and R.P. Adams: Practical Bayesian optimization of machine learning algorithms. Adv. Neural. Inf. Process. Syst. (25), 2951–2959 (2012).

    Google Scholar 

  11. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998).

    Article  Google Scholar 

  12. A. Krizhevsky, I. Sutskever, and G.E. Hinton: ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012).

    Google Scholar 

  13. F.H.D. Araujo, R.R.V. Silva, F.N.S. Medeiros, D.D. Parkinson, A. Hexemer, C.M. Carneiro, and D.M. Ushizima: Reverse image search for scientific data within and beyond the visible spectrum. Expert Syst. Appl. 109, 35–48 (2018).

    Article  Google Scholar 

  14. J. Ling, M. Hutchinson, E. Antono, B. DeCost, E.A Holm, and B. Meredig: Building data-driven models with microstructure images: generalization and interpretability. Mater. Discov. 10, 19–28 (2017).

    Article  Google Scholar 

  15. D.M. Pelt and J.A. Sethian: A mixed-scale dense convolutional neural network for image analysis. Proc. Natl. Acad. Sci. USA 115, 254–259 (2018).

    Article  CAS  Google Scholar 

  16. A. Oliynik, E. Antono, T. Sparks, L. Ghadbeigi, M. Gaultois, B. Meredig, and A. Mar: High-throughput machine-learning-driven synthesis of fullheusler compounds. Chem. Mater. 28, 7324–7331 (2016).

    Article  Google Scholar 

  17. C. Douarre, R. Schielein, C. Frindel, S. Gerth, and D. Rousseau: Transfer learning from synthetic data applied to soil-root segmentation in x-ray tomography images. J. Imaging 4, 65 (2018).

    Article  Google Scholar 

  18. M.H. Kiapour, K. Yager, A.C. Berg, and T.L. Berg: Materials discovery: fine-grained classification of x-ray scattering images. IEEE Winter Conference on Applications of Computer Vision, 933–940 (2014).

    Chapter  Google Scholar 

  19. B. Wang, K. Yager, D. Yu, and M. Hoai: X-ray scattering image classification using deep learning. IEEE Winter Conference on Applications of Computer Vision (WACV), 697–704 (2017).

    Chapter  Google Scholar 

  20. Y. Li, W. Cheng, L.H. Yu, and R. Rainer: Genetic algorithm enhanced by machine learning in dynamic aperture optimization. Phys. Rev. Accel. Beams 21, 054601 (2018).

    Article  CAS  Google Scholar 

  21. D. Rossou, P. Burdet, F. de la Peña, C. Ducati, B. Knappett, A. Edward Henry Wheatley, and P. Anthony Midgley: Multicomponent signal unmixing from nanoheterostructures: overcome the traditional challenges of nanoscale x-ray analysis via machine learning. Nanoletters 15(4), 2716–2720 (2015).

    Article  Google Scholar 

  22. N. Laanait, Z. Zhang, and C.M. Schlepütz: Imaging nanoscale lattice variations by machine learning of x-ray diffraction microscopy data. Nanotechnology 27, 374002 (2016).

    Article  Google Scholar 

  23. J. Timoshenko, D. Lu, Y. Lin, and A.I. Frenkel: Supervised machine-learning-based determination of three-dimensional structure of metallic nanoparticles. J. Phys. Chem. Lett. 8, 5091–5098 (2017).

    Article  CAS  Google Scholar 

  24. S.T. Chourou, A. Sarje, X.S. Li, E.R. Chan, and A. Hexemer: HipGISAXS: a highperformance computing code for simulating grazing-incidence x-ray scattering data. J. Appl. Crystallogr. 46, 1781–1795 (2013). https://www.hipgisaxs.github.io/.

    Article  CAS  Google Scholar 

  25. I. Goodfellow, Y. Bengio, and A. Courville: Deep Learning (MIT Press, Cambridge, MA, 2016), pp. 173–174.

    Google Scholar 

  26. N.M Nasrabadi: Pattern recognition and machine learning. J. Electron. Imaging 16, 049901 (2007).

    Article  Google Scholar 

  27. K. Simonyan and A. Zisserman: Very deep convolutional networks for large-scale image recognition. The International Conference on Learning Representations (ICLR), 1–14 (2015).

    Google Scholar 

  28. K. He, X. Zhang, S. Ren, and J. Sun: Deep residual learning for image recognition. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–778 (2016).

    Google Scholar 

  29. S. Wold, K. Esbensen, and P. Geladi: Principal component analysis. Chemom. Intell. Lab. Syst. 2, 37–52 (1987).

    Article  CAS  Google Scholar 

  30. X. Ye, C. Zhu, P. Ercius, S.N. Raja, B. He, M.R. Jones, M.R. Hauwiller, Y. Liu, T. Xu, and P. Alivisatos: Structural diversity in binary superlattices self-assembled from polymer-grafter nanocrystals. Nature 6, 1–10 (2015).

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge authors Ye, Zhu, Ercius, Raja, He, Jones, Hauwiller, Liu, Xu, and Alivisatos for allowing us to use their data for our real experiment analysis. This work was supported by the Center of Advanced Mathematics for Energy Research Applications (CAMERA) through the Office of Science, of the US Department of Energy under Contract No. DE-AC02-05CH11231 and the Early Career Program. This research is funded in part by the Gordon and Betty Moore Foundation through Grant GBMF3834 and by the Alfred P. Sloan Foundation through Grant 2013-10-27 to the University of California, Berkeley. This research used resources of the National Energy Research Scientific Computing Center (NERSC), a US Department of Energy Office of Science User Facility operated under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela M. Ushizima.

Supplementary Material

Supplementary Material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2019.26

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Melton, C.N., Venkatakrishnan, S. et al. Convolutional neural networks for grazing incidence x-ray scattering patterns: thin film structure identification. MRS Communications 9, 586–592 (2019). https://doi.org/10.1557/mrc.2019.26

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2019.26

Navigation