Skip to main content

Development of thermosensitive hybrid hydrogels based on xylan-type hemicellulose from agave bagasse: characterization and antibacterial activity


This work focuses on the functionalization of agave xylan-type hemicellulose functionalized with trimethoxysilylpropylmethacrylate and cross-linked with N-vinylcaprolactam to obtain a thermoresponsive material for potential applications in drug delivery. The hydrogels showed an interconnected and porous architecture with a lower critical solution temperature (LCST) close to poly(N-vinylcaprolactam)’s (PNVCL) LCST. These materials showed a good capacity to load ciprofloxacin (in the range 9.5 × 10−3-8.4 × 10−3 mg/mL), above the minimum inhibitory concentration (MIC = 0.004 × 10−3-0.5 × 10−3 mg/mL) for gram-positive and gram-negative bacteria. The hybrid hydrogel inhibited the growth of Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Table I


  1. 1.

    A.F.A. Chimphango, W.H. van Zyl, and J.F. Görgens: In situ enzymatic aided formation of xylan hydrogels and encapsulation of horse radish peroxidase for slow release. Carbohydr. Polym. 88, 1109 (2012).

    CAS  Article  Google Scholar 

  2. 2.

    P. Gatenholm and M. Tenkanen (eds): Hemicelluloses: Science and Technology (American Chemical Society, Washington, D.C., 2003).

    Book  Google Scholar 

  3. 3.

    A. Ebringerová, Z. Hromádková, and T. Heinze: Hemicellulose. In Polysaccharides I: Structure, Characterization and Use, edited by T. Heinze (Springer, Berlin/Heidelberg, 2005) pp. 1–67.

    Google Scholar 

  4. 4.

    K. Markstedt, K. Håkansson, G. Toriz, and P. Gatenholm: Materials from trees assembled by 3D printing — Wood tissue beyond nature limits. Appl. Mater. Today 15, 280 (2019).

    Article  Google Scholar 

  5. 5.

    Consejo Regulador del Tequila Mexico: (accessed August 30, 2019).

  6. 6.

    H. Li, M.B. Foston, R. Kumar, R. Samuel, X. Gao, F. Hu, A.J. Ragauskas, and C.E. Wyman: Chemical composition and characterization of cellulose for Agave as a fast-growing, drought-tolerant biofuels feedstock. RSC Adv. 2, 4951 (2012).

    CAS  Article  Google Scholar 

  7. 7.

    X. Li and X. Pan: Hydrogels based on hemicellulose and lignin from lignocellulose biorefinery: a mini-review. J. Biobased Mater. Bioenergy 4, 289 (2010).

    Article  Google Scholar 

  8. 8.

    W.-Q. Kong, C.-D. Gao, S.-F. Hu, J.-L. Ren, L.-H. Zhao, and R.-C. Sun: Xylan-modified-based hydrogels with temperature/pH dual sensitivity and controllable drug delivery behavior. Materials 10, 304 (2017).

    Article  Google Scholar 

  9. 9.

    J. Venugopal, R. Rajeswari, M. Shayanti, R. Sridhar, S. Sundarrajan, R. Balamurugan, and S. Ramakrishna: Xylan polysaccharides fabricated into nanofibrous substrate for myocardial infarction. Mater. Sci. Eng. C 33, 1325 (2013).

    CAS  Article  Google Scholar 

  10. 10.

    Q.-Q. Dai, J.-L. Ren, F. Peng, X.-F. Chen, C.-D. Gao, and R.-C. Sun: Synthesis of acylated xylan-based magnetic Fe3O4 hydrogels and their application for H2O2 detection. Materials 9, 690 (2016).

    Article  Google Scholar 

  11. 11.

    V. Kuzmenko, D. Hägg, G. Toriz, and P. Gatenholm: In situ forming spruce xylan-based hydrogel for cell immobilization. Carbohydr. Polym. 102, 862 (2014).

    CAS  Article  Google Scholar 

  12. 12.

    C. Gao, J. Ren, C. Zhao, W. Kong, Q. Dai, Q. Chen, C. Liu, and R. Sun: Xylan-based temperature/pH sensitive hydrogels for drug controlled release. Carbohydr. Polym. 151, 189 (2016).

    CAS  Article  Google Scholar 

  13. 13.

    X.-W. Peng, J.-L. Ren, L.-X. Zhong, and R.-C. Sun: Nanocomposite films based on xylan-rich hemicelluloses and cellulose nanofibers with enhanced mechanical properties. Biomacromolecules 12, 3321 (2011).

    CAS  Article  Google Scholar 

  14. 14.

    S. Taokaew, M. Phisalaphong, and B.-m.Z. Newby: Modification of bacterial cellulose with organosilanes to improve attachment and spreading of human fibroblasts. Cellulose 22, 2311 (2015).

    CAS  Article  Google Scholar 

  15. 15.

    X. Bourges, P. Weiss, G. Daculsi, and G. Legeay: Synthesis and general properties of silated-hydroxypropyl methylcellulose in prospect of biomedical use. Adv. Colloid Interface Sci. 99, 215 (2002).

    CAS  Article  Google Scholar 

  16. 16.

    D. Roy, J.N. Cambre, and B.S. Sumerlin: Future perspectives and recent advances in stimuli-responsive materials. Prog. Polym. Sci. 35, 278 (2010).

    CAS  Article  Google Scholar 

  17. 17.

    S. Tang, R. Bhandari, S.P. Delaney, E.J. Munson, T.D. Dziubla, and J.Z. Hilt: Synthesis and characterization of thermally responsive N-isopropylacrylamide hydrogels copolymerized with novel hydrophobic polyphenolic crosslinkers. Mater. Today Commun. 10, 46 (2017).

    CAS  Article  Google Scholar 

  18. 18.

    A. Cruz, L. García-Uriostegui, A. Ortega, T. Isoshima, and G. Burillo: Radiation grafting of N-vinylcaprolactam onto nano and macrogels of chitosan: synthesis and characterization. Carbohydr. Polym. 155, 303 (2017).

    CAS  Article  Google Scholar 

  19. 19.

    G. Reid, S. Sharma, K. Advikolanu, C. Tieszer, R.A. Martin, and A.W. Bruce: Effects of ciprofloxacin, norfloxacin, and ofloxacin on in vitro adhesion and survival of Pseudomonas aeruginosa AK1 on urinary catheters. Antimicrob. Agents Chemother. 38, 1490 (1994).

    CAS  Article  Google Scholar 

  20. 20.

    H.-Y. Li, S.-N. Sun, X. Zhou, F. Peng, and R.-C. Sun: Structural characterization of hemicelluloses and topochemical changes in Eucalyptus cell wall during alkali ethanol treatment. Carbohydr. Polym. 123, 17 (2015).

    CAS  Article  Google Scholar 

  21. 21.

    M.C.B. Salon, G. Gerbaud, M. Abdelmouleh, C. Bruzzese, S. Boufi, and M.N. Belgacem: Studies of interactions between silane coupling agents and cellulose fibers with liquid and solid-state NMR. Antimicrob. Agents Chemother. 45, 473 (2007).

    CAS  Google Scholar 

  22. 22.

    K. Werner, L. Pommer, and M. Broström: Thermal decomposition of hemicelluloses. J. Anal. Appl. Pyrolysis 110, 130 (2014).

    CAS  Article  Google Scholar 

  23. 23.

    K. Varaprasad, G.M. Raghavendra, T. Jayaramudu, M.M. Yallapu, and R. Sadiku: A mini review on hydrogels classification and recent developments in miscellaneous applications. Mater. Sci. Eng. C 79, 958 (2017).

    CAS  Article  Google Scholar 

  24. 24.

    W.S. Toh and X.J. Loh: Advances in hydrogel delivery systems for tissue regeneration. Mater. Sci. Eng. C 45, 690 (2014).

    CAS  Article  Google Scholar 

  25. 25.

    S. Hu, X. Cai, X. Qu, B. Yu, C. Yan, J. Yang, F. Li, Y. Zheng, and X. Shi: Preparation of biocompatible wound dressings with long-term antimicrobial activity through covalent bonding of antibiotic agents to natural polymers. Int. J. Biol. Macromol. 123, 1320 (2019).

    CAS  Article  Google Scholar 

  26. 26.

    Y. Wang, L. Yao, T. Ren, and J. He: Robust yet self-healing antifogging/antibacterial dual-functional composite films by a simple one-pot strategy. J. Colloid Interface Sci. 540, 107 (2019).

    CAS  Article  Google Scholar 

Download references


Authors thank the Instituto Transdisciplinar de Investigation y Servicios (ITRANS) of the Universidad de Guadalajara for technical assistance in NMR studies. Dr. L. Garcia-Uriostegui thanks CONACyT grant CB2016 (Project No. 283642) for financial support.

Author information



Corresponding author

Correspondence to L. García-Uriostegui.

Electronic supplementary material

Supplementary material

Supplementary material

The supplementary material for this article can be found at

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arellano-Sandoval, L., Delgado, E., Camacho-Villegas, T.A. et al. Development of thermosensitive hybrid hydrogels based on xylan-type hemicellulose from agave bagasse: characterization and antibacterial activity. MRS Communications 10, 147–154 (2020).

Download citation