Skip to main content

Commercial carbon anode material surface-modified by spinel lithium titanate for fast lithium-ion interaction

Abstract

This research utilizes anatase TiO2 incorporated with lithium salt via a simple wet physical method to surface-modified the commercial graphite to form the lithium titanate/graphite composite coated with an amorphous carbon layer on its surface (the double core-shell structure) to enhance its surface conductivity. This double core-shell structure provides a stable specific capacity about 280 mAh/g under the high current density, 2.25 A/g with 15% capacity retention decay. Its intercalation potential is below 1 V that is much lower than that of 1.55 V, the intercalation potential of spinel Li4Ti5O12, to make higher power and energy density for a full cell.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. 1.

    P. Simon and Y. Gogotsi: Materials for electrochemical capacitors. Nat. Mater. 7, 845 (2008).

    CAS  Google Scholar 

  2. 2.

    B. Dunn, H. Kamath, and J. Tarascon: Electrical energy storage for the grid: a battery of choices. Science 334, 928 (2011).

    CAS  Article  Google Scholar 

  3. 3.

    Z. Zhou, M. Benbouzida, J.F. Charpentier, F. Scuiller, and T. Tang: A review of energy storage technologies for marine current energy systems. Renew. Sustain. Energy Rev. 18, 390 (2013).

    CAS  Article  Google Scholar 

  4. 4.

    S. Flandrois and B. Simon: Carbon materials for lithium-ion rechargeable batteries. Carbon 37, 165 (1999).

    CAS  Article  Google Scholar 

  5. 5.

    Y.P. Wu, E. Rahm, and R. Holze: Carbon anode materials for lithium ion batteries. J. Power Sources 114, 228 (2003).

    CAS  Article  Google Scholar 

  6. 6.

    J. Read, D. Foster, J. Wolfenstine, and W. Behl: SnO2-carbon composites for lithium-ion battery anodes. J. Power Sources 96, 277 (2001).

    CAS  Article  Google Scholar 

  7. 7.

    T.F. Yi, L. Jiang, J. Shu, C.B. Yue, R. Zhu, and H. Qiao: Recent development and application of Li4Ti5O12 as anode material of lithium ion battery. J. Phys. Chem. Solids 71, 1236 (2010).

    CAS  Article  Google Scholar 

  8. 8.

    A. Guerfi, S. Sévigny, M. Lagacé, P. Hovington, K. Kinoshita, and K. Zaghib: Nano-particle Li4Ti5O12 spinel as electrode for electrochemical generators. J. Power Sources 88, 119 (2003).

    Google Scholar 

  9. 9.

    E.M. Sorensen, S.J. Barry, H. Jung, J.M. Rondinelli, J.T. Vaughey, and K.R. Poeppelmeier: Three-dimensionally ordered macroporous Li4Ti5O12: effect of wall structure on electrochemical properties. Chem. Mater. 18, 48 (2006).

    Google Scholar 

  10. 10.

    C. Casas and W. Li: A review of application of carbon nanotubes for lithium ion battery anode material. J. Power Sources 74, 208 (2012).

    Google Scholar 

  11. 11.

    T. Kar, J. Pattanayak, and S. Scheiner: Insertion of lithium ions into carbon nanotubes: an ab initio study. J. Phys. Chem. A 105, 10397 (2001).

    CAS  Article  Google Scholar 

  12. 12.

    C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X. Zhang, R.A. Huggins, and Y. Cui: High-performance lithium battery anodes using silicon nanowires. Nat. Nanotech. 3, 31 (2008).

    CAS  Article  Google Scholar 

  13. 13.

    S. Ramakrishna, K. Fujihara, W.E. Teo, T.C. Lim, and Z. Ma: An Introduction to Electrospinning and Nanofibers (World Scientific, Singapore, 2005).

    Book  Google Scholar 

  14. 14.

    F. Yao and C.S. Cojocaru: Carbon-Based Nanomaterials as an Anode for Lithium Ion Battery. Micro and nanotechnologies/Microelectronics, Ecole Polytechnique X, 2013. English. pastel-00967913. https://pastel.archives-ouvertes.fr/pastel-00967913.

  15. 15.

    P. Lian, X. Zhu, S. Liang, Z. Li, W. Yang, and H. Wang: Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries. Electrochim. Acta 55, 3909 (2010).

    CAS  Article  Google Scholar 

  16. 16.

    G.J. Wang, J. Gao, L.J. Fu, N.H. Zhao, Y.P. Wu, and T. Takamura: Preparation and characteristic of carbon-coated Li4Ti5O12 anode material. J. Power Sources 174, 1109 (2007).

    CAS  Article  Google Scholar 

  17. 17.

    M.G. Verde, L. Baggetto, N. Balke, G.M. Veith, J. Seo, Z. Wang, and Y.S. Meng: Elucidating the phase transformation of Li4Ti5O12 lithiation at the nanoscale. ACS Nano 10, 4312 (2016).

    CAS  Article  Google Scholar 

  18. 18.

    E. Peled and S. Menkin: Review—SEI: past, present and future. J. Electrochem. Soc. 164, A1703 (2017).

    CAS  Article  Google Scholar 

  19. 19.

    A. Mahmoud, J.M. Amarilla, K. Lasri, and I. Saadoune: Influence of the synthesis method on the electrochemical properties of the Li4Ti5O12 spinel in Li-half and Li-ion full-cells. A systematic comparison. Electrochim. Acta 93, 163 (2013).

    CAS  Article  Google Scholar 

  20. 20.

    M. Wagemaker and F.M. Mulder: Properties and promises of nanosized insertion materials for Li-Ion batteries. Acc. Chem. Res. 46, 1206 (2013).

    CAS  Article  Google Scholar 

  21. 21.

    X. Li and C. Wang: Engineering nanostructured anodes via electrostatic spray deposition for high performance lithium ion battery application. J. Mater. Chem. A 1, 165 (2013).

    CAS  Article  Google Scholar 

  22. 22.

    S.K. Martha, O. Haik, V. Borgel, E. Zinigrad, I. Exnar, T. Drezen, J.H. Miners, and D. Aurbach: Li4Ti5O12/LiMnPO4 lithium-ion battery systems for load leveling application. J. Electrochem. Soc. 158, A790 (2011).

    CAS  Article  Google Scholar 

  23. 23.

    G.N. Zhu, L. Chen, Y.G. Wang, C.X. Wang, R.C. Che, and Y.Y. Xia: Binary Li4Ti5O12-Li2Ti3O7 nanocomposite as an anode material for Li-Ion batteries. Adv. Funct. Mater. 23, 640 (2013).

    CAS  Article  Google Scholar 

  24. 24.

    Q. Cheng, S. Tang, J. Liang, J. Zhao, Q. Lan, C. Liu, and Y.C. Cao: High rate performance of the carbon encapsulated Li4Ti5O12 for lithium ion battery. Results Phys. 7, 810 (2017).

    Article  Google Scholar 

  25. 25.

    J. Wang, X.-M. Liu, H. Yang, and X.D. Shen: Characterization and electrochemical properties of carbon-coated Li4Ti5O12 prepared by a citric acid sol–gel method. J. Alloys Compd. 509, 712 (2011).

    CAS  Article  Google Scholar 

  26. 26.

    J.Y. Lin, C.C. Hsu, H.P. Ho, and S.h Wu: Sol–gel synthesis of aluminum doped lithium titanate anode material for lithium ion batteries. Electrochim. Acta 87, 126 (2013).

    CAS  Article  Google Scholar 

  27. 27.

    Q. Xia, A. Xu, L. Du, Y. Yan, and S. Wu: High-rate, long-term performance of LTO-pillared silicon/carbon composites for lithium-ion batteries anode under high temperature. J. Alloys Compd. 800, 50 (2019).

    CAS  Article  Google Scholar 

Download references

Acknowledgment

This research project is funded by the Ministry of Science and Technology, Taiwan with the project number: MOST 108-2221-E-110-075.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lung-Hao Hu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hu, LH. Commercial carbon anode material surface-modified by spinel lithium titanate for fast lithium-ion interaction. MRS Communications 10, 141–146 (2020). https://doi.org/10.1557/mrc.2019.164

Download citation