Skip to main content

Planet-satellite nanostructures from inorganic nanoparticles: from synthesis to emerging application

Abstract

Planet-satellite-type supracolloidal clusters represent a comparably young class of nanomaterials, which are unique with regard to structural order. In this prospective article, different approaches for their synthesis are discussed and compared. These synthetic methods enable the engineering of supracolloidal structural and adaptive properties, which in turn enables different emerging applications, such as in sensing and catalysis. These possibilities are explored on the basis of selected recent examples. A perspective about possible future developments is given at the end of this article.

This is a preview of subscription content, access via your institution.

Figure 1
Table I
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. 1.

    C.S. Plüisch and A. Wittemann: Assembly of nanoparticles into “colloidal molecules”: toward complex and yet defined colloids with exciting perspectives. In Advances in Colloid Science, edited by M. Rahman and A.M. Asiri (InTech, Rijeka, 2016) pp. 237–264.

    Google Scholar 

  2. 2.

    M. Mayer, M.J. Schnepf, T.A.F. König, and A. Fery: Colloidal self-assembly concepts for plasmonic metasurfaces. Adv. Opt. Mater. 7, 1800564 (2019).

    Google Scholar 

  3. 3.

    J.H. Yoon and S. Yoon: Probing interfacial interactions using core-satellite plasmon rulers. Langmuir 29, 14772 (2013).

    CAS  Google Scholar 

  4. 4.

    C. Rossner and P. Vana: Planet–satellite nanostructures made to order by RAFT star polymers. Angew. Chem. Int. Ed. 53, 12639 (2014).

    CAS  Google Scholar 

  5. 5.

    N. Liu, B.S. Prall, and V.I. Klimov: Hybrid gold/silica/nanocrystal-quantum-dot superstructures: synthesis and analysis of semiconductor-metal interactions. J. Am. Chem. Soc. 128, 15362 (2006).

    CAS  Google Scholar 

  6. 6.

    R. Schreiber, J. Do, E.M. Roller, T. Zhang, V.J. Schüller, P.C. Nickels, J. Feldmann, and T. Liedl: Hierarchical assembly of metal nanoparticles, quantum dots and organic dyes using DNA origami scaffolds. Nat. Nanotechnol. 9, 74 (2014).

    CAS  Google Scholar 

  7. 7.

    B.S. Chapman, W.C. Wu, Q. Li, N. Holten-Andersen, and J.B. Tracy: Heteroaggregation approach for depositing magnetite nanoparticles onto silica-overcoated gold nanorods. Chem. Mater. 29, 10362 (2017).

    CAS  Google Scholar 

  8. 8.

    W. Xie, B. Walkenfort, and S. Schlücker: Label-free SERS monitoring of chemical reactions catalyzed by small gold nanoparticles using 3D plasmonic superstructures. J. Am. Chem. Soc. 135, 1657 (2013).

    CAS  Google Scholar 

  9. 9.

    T. Torimoto, H. Horibe, T. Kameyama, K.I. Okazaki, S. Ikeda, M. Matsumura, A. Ishikawa, and H. Ishihara: Plasmon-enhanced photocatalytic activity of cadmium sulfide nanoparticle immobilized on silica-coated gold particles. J. Phys. Chem. Lett. 2, 2057 (2011).

    CAS  Google Scholar 

  10. 10.

    M. Gellner, D. Steinigeweg, S. Ichilmann, M. Salehi, M. Schütz, K. Kömpe, M. Haase, and S. Schlücker: 3D self-assembled plasmonic superstructures of gold nanospheres: synthesis and characterization at the single-particle level. Small 7, 3445 (2011).

    CAS  Google Scholar 

  11. 11.

    M. Schütz and S. Schlücker: Molecularly linked 3D plasmonic nanoparticle core/satellite assemblies: SERS nanotags with single-particle Raman sensitivity. Phys. Chem. Chem. Phys. 17, 24356 (2015).

    Google Scholar 

  12. 12.

    J.H. Yoon, J. Lim, and S. Yoon: Controlled assembly and plasmonic properties of asymmetric core-satellite nanoassemblies. ACS Nano 6, 7199 (2012).

    CAS  Google Scholar 

  13. 13.

    N. Gandra and S. Singamaneni: “Clicked” plasmonic core–satellites: covalently assembled gold nanoparticles. Chem. Commun. 48, 11540 (2012).

    CAS  Google Scholar 

  14. 14.

    N. Gandra, A. Abbas, L. Tian, and S. Singamaneni: Plasmonic planet-satellite analogues: hierarchical self-assembly of gold nanostructures. Nano Lett. 12, 2645 (2012).

    CAS  Google Scholar 

  15. 15.

    S. Borsley, S. Flook, and E.R. Kay: Rapid and simple preparation of remarkably stable binary nanoparticle planet–satellite assemblies. Chem. Commun. 51, 7812 (2015).

    CAS  Google Scholar 

  16. 16.

    J. Guo, B.L. Tardy, A.J. Christofferson, Y. Dai, J.J. Richardson, W. Zhu, M. Hu, Y. Ju, J. Cui, R.R. Dagastine, I. Yarovsky, and F. Caruso: Modular assembly of superstructures from polyphenol-functionalized building blocks. Nat. Nanotechnol. 11, 1105 (2016).

    CAS  Google Scholar 

  17. 17.

    G. Chen, K.J. Gibson, D. Liu, H.C. Rees, J.H. Lee, W. Xia, R. Lin, H.L. Xin, O. Gang, and Y. Weizmann: Regioselective surface encoding of nanoparticles for programmable self-assembly. Nat. Mater. 18, 169 (2019).

    CAS  Google Scholar 

  18. 18.

    C. Rossner and P. Vana: Nanocomposites and self-assembled structures via controlled radical polymerization. Adv. Polym. Sci. 270, 193 (2016).

    CAS  Google Scholar 

  19. 19.

    L. Wu, U. Glebe, and A. Böker: Fabrication of thermoresponsive plasmonic core–satellite nanoassemblies with a tunable stoichiometry via surface-initiated reversible addition–fragmentation chain transfer polymerization from silica nanoparticles. Adv. Mater. Interfaces 4, 1700092 (2017).

    Google Scholar 

  20. 20.

    C. Li and B.C. Benicewicz: Synthesis of well-defined polymer brushes grafted onto silica nanoparticles via surface reversible addition-fragmentation chain transfer polymerization. Macromolecules 38, 5929 (2005).

    CAS  Google Scholar 

  21. 21.

    J. Tian, B. Huang, and W. Zhang: Precise self-assembly and controlled catalysis of thermoresponsive core–satellite multicomponent hybrid nanoparticles. Langmuir 35, 266 (2019).

    CAS  Google Scholar 

  22. 22.

    Y. Lu, Y. Mei, M. Drechsler, and M. Ballauff: Thermosensitive core–shell particles as carriers for Ag nanoparticles: modulating the catalytic activity by a phase transition in networks. Angew. Chem. Int. Ed. 45, 813 (2006).

    CAS  Google Scholar 

  23. 23.

    Y. Lu, Y. Mei, M. Ballauff, and M. Drechsler: Thermosensitive core–shell particles as carrier systems for metallic nanoparticles. J. Phys. Chem. B 110, 3930 (2006).

    CAS  Google Scholar 

  24. 24.

    R. Roa, Y. Lu, J. Dzubiella, F. Piazza, M. Ballauff, and S. Angioletti-Uberti: Catalysis by metallic nanoparticles in solution: thermosensitive microgels as nanoreactors. Z. Phys. Chem. 232, 773 (2018).

    CAS  Google Scholar 

  25. 25.

    L. Tzounis, M. Doña, J.M. Lopez-Romero, A. Fery, and R. Contreras-Caceres: Temperature-controlled catalysis by core–shell–satellite AuAg@pNIPAM@Ag hybrid microgels: a highly efficient catalytic thermoresponsive nanoreactor. ACS Appl. Mater. Interfaces 11, 29360 (2019).

    CAS  Google Scholar 

  26. 26.

    S. Pierrat, I. Zins, A. Breivogel, and G. Sönnichsen: Self-assembly of small gold colloids with functionalized gold nanorods. Nano Lett. 7, 259 (2007).

    CAS  Google Scholar 

  27. 27.

    Z. Fan, M. Tebbe, A. Fery, S. Agarwal, and A. Greiner: Assembly of gold nanoparticles on gold nanorods using functionalized poly(N-isopropylacrylamide) as polymeric “glue”. Part. Part. Syst. Charact. 33, 698 (2016).

    CAS  Google Scholar 

  28. 28.

    F. Han, S.R.C. Vivekchand, A.H. Soeriyadi, Y. Zheng, and J.J. Gooding: Thermoresponsive plasmonic core–satellite nanostructures with reversible, temperature sensitive optical properties. Nanoscale 10, 4284 (2018).

    CAS  Google Scholar 

  29. 29.

    F. Han, A.H. Soeriyadi, and J.J. Gooding: Reversible thermoresponsive plasmonic core–satellite nanostructures that exhibit both expansion and contraction (UCST and LCST). Macromol. Rapid Commun. 39, 1800451 (2018).

    Google Scholar 

  30. 30.

    G. Marcelo, F. Burns, T. Ribeiro, J.M.G. Martinho, M.P. Tarazona, E. Saiz, M.G. Moffitt, and J.P.S. Farinha: Versatile tetrablock copolymer scaffold for hierarchical colloidal nanoparticle assemblies: synthesis, characterization, and molecular dynamics simulation. Langmuir 33, 8201 (2017).

    CAS  Google Scholar 

  31. 31.

    T. Ribeiro, T.J.V. Prazeres, M. Moffitt, and J.P.S. Farinha: Enhanced photoluminescence from micellar assemblies of cadmium sulfide quantum dots and gold nanoparticles. J. Phys. Chem. C 117, 3122 (2013).

    CAS  Google Scholar 

  32. 32.

    P. Dey, S. Zhu, K.J. Thurecht, P.M. Fredericks, and I. Blakey: Self assembly of plasmonic core–satellite nano-assemblies mediated by hyperbranched polymer linkers. J. Mater. Chem. B 2, 2827 (2014).

    CAS  Google Scholar 

  33. 33.

    R. Gunawidjaja, S. Peleshanko, H. Ko, and V.V. Tsukruk: Bimetallic nanocobs: decorating silver nanowires with gold nanoparticles. Adv. Mater. 20, 1544 (2008).

    CAS  Google Scholar 

  34. 34.

    C. Rossner, Q. Tang, O. Glatter, M. Müller, and P. Vana: Uniform distance scaling behavior of planet-satellite nanostructures made by star polymers. Langmuir 33, 2017 (2017).

    CAS  Google Scholar 

  35. 35.

    W. Peng, C. Rossner, V. Roddatis, and P. Vana: Gold-planet–silver-satellite nanostructures using RAFT star polymer. ACS Macro Lett. 5, 1227 (2016).

    CAS  Google Scholar 

  36. 36.

    C. Rossner, V. Roddatis, S. Lopatin, and P. Vana: Functionalization of planet–satellite nanostructures revealed by nanoscopic localization of distinct macromolecular species. Macromol. Rapid Commun. 37, 1742 (2016).

    CAS  Google Scholar 

  37. 37.

    C. Rossner, O. Glatter, and P. Vana: Stimulus-responsive planet–satellite nanostructures as colloidal actuators: reversible contraction and expansion of the planet-satellite distance. Macromolecules 50, 7344 (2017).

    CAS  Google Scholar 

  38. 38.

    C. Rossner, Q. Tang, M. Müller, and G. Kothleitner: Phase separation in mixed polymer brushes on nanoparticle surfaces enables the generation of anisotropic nanoarchitectures. Soft Matter 14, 4551 (2018).

    CAS  Google Scholar 

  39. 39.

    R.P.M. Höller, M. Dulle, S. Thomä, M. Mayer, A.M. Steiner, S. Förster, A. Fery, C. Kuttner, and M. Chanana: Protein-assisted assembly of modular 3D plasmonic raspberry-like core/satellite nanoclusters: correlation of structure and optical properties. ACS Nano 10, 5740 (2016).

    Google Scholar 

  40. 40.

    C. Kuttner, R.P.M. Höller, M. Quintanilla, M.J. Schnepf, M. Dulle, A. Fery, and L.M. Liz-Marzán: SERS and plasmonic heating efficiency from anisotropic core/satellite superstructures. Nanoscale 11, 17655 (2019).

    CAS  Google Scholar 

  41. 41.

    F. Li, H. Chen, Y. Zhang, Z. Chen, Z.P. Zhang, X.E. Zhang, and Q. Wang: Three-dimensional gold nanoparticle clusters with tunable cores templated by a viral protein scaffold. Small 8, 3832 (2012).

    CAS  Google Scholar 

  42. 42.

    R.C. Mucic, J.J. Storhoff, C.A. Mirkin, and R.L. Letsinger: DNA-directed synthesis of binary nanoparticle network materials. J. Am. Chem. Soc. 120, 12674 (1998).

    CAS  Google Scholar 

  43. 43.

    S. Pal, J. Sharma, H. Yan, and Y. Liu: Stable silver nanoparticle-DNA conjugates for directed self-assembly of core-satellite silver-gold nanoclusters. Chem. Commun. 6059 (2009).

    Google Scholar 

  44. 44.

    T.G.W. Edwardson, K.L. Lau, D. Bousmail, C.J. Serpell, and H.F. Sleiman: Transfer of molecular recognition information from DNA nanostructures to gold nanoparticles. Nat. Chem. 8, 162 (2016).

    CAS  Google Scholar 

  45. 45.

    D.S. Sebba, J.J. Mock, D.R. Smith, T.H. Labean, and A.A. Lazarides: Reconfigurable core–satellite nanoassemblies as molecularly-driven plasmonic switches. Nano Lett. 8, 1803 (2008).

    CAS  Google Scholar 

  46. 46.

    N.H. Kim, S.J. Lee, and M. Moskovits: Reversible tuning of SERS hot spots with aptamers. Adv. Mater. 23, 4152 (2011).

    CAS  Google Scholar 

  47. 47.

    X. Li, F.-J. Kao, C.-C. Chuang, and S. He: Enhancing fluorescence of quantum dots by silica-coated gold nanorods under one- and two-photon excitation. Opt. Express 18, 11335 (2010).

    CAS  Google Scholar 

  48. 48.

    J.H. Yoon, Y. Zhou, M.G. Blaber, G.C. Schatz, and S. Yoon: Surface plasmon coupling of compositionally heterogeneous core–satellite nanoassemblies. J. Phys. Chem. Lett. 4, 1371 (2013).

    CAS  Google Scholar 

  49. 49.

    J. Lee, P. Hernandez, J. Lee, A.O. Govorov, and N.A. Kotov: Exciton–plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection. Nat. Mater. 6, 291 (2007).

    CAS  Google Scholar 

  50. 50.

    Y.-C. Chang, L.-C. Huang, S.-Y. Chuang, W.-L. Sun, T.-H. Lin, and S.-Y. Chen: Polyelectrolyte induced controlled assemblies for the backbone of robust and brilliant Raman tags. Opt. Express 25, 24767 (2017).

    CAS  Google Scholar 

  51. 51.

    N. Pazos-Perez, J.M. Fitzgerald, V. Giannini, L. Guerrini, and R.A. Alvarez-Puebla: Modular assembly of plasmonic core–satellite structures as highly brilliant SERS-encoded nanoparticles. Nanoscale Adv. 1, 122 (2019).

    CAS  Google Scholar 

  52. 52.

    M. Focsan, A.M. Gabudean, A. Vulpoi, and S. Astilean: Controlling the luminescence of carboxyl-functionalized CdSe/ZnS core-shell quantum dots in solution by binding with gold nanorods. J. Phys. Chem. C 118, 25190 (2014).

    CAS  Google Scholar 

  53. 53.

    D.S. Sebba, T.H. Labean, and A.A. Lazarides: Plasmon coupling in binary metal core–satellite assemblies. Appl. Phys. B Lasers Opt. 93, 69 (2008).

    CAS  Google Scholar 

  54. 54.

    D.S. Sebba and A.A. Lazarides: Robust detection of plasmon coupling in core–satellite nanoassemblies linked by DNA. J. Phys. Chem. C 112, 18331 (2008).

    CAS  Google Scholar 

  55. 55.

    S.Y. Chen and A.A. Lazarides: Quantitative amplification of Cy5 SERS in ‘warm spots’ created by plasmonic coupling in nanoparticle assemblies of controlled structure. J. Phys. Chem. C 113, 12167 (2009).

    CAS  Google Scholar 

  56. 56.

    L. Xu, H. Kuang, C. Xu, W. Ma, L. Wang, and N.A. Kotov: Regiospecific plasmonic assemblies for in situ Raman spectroscopy in live cells. J. Am. Chem. Soc. 134, 1699 (2012).

    CAS  Google Scholar 

  57. 57.

    C. Wang, Y. Du, Q. Wu, S. Xuan, J. Zhou, J. Song, F. Shao, and H. Duan: Stimuli-responsive plasmonic core–satellite assemblies: i-motif DNA linker enabled intracellular pH sensing. Chem. Commun. 49, 5739 (2013).

    CAS  Google Scholar 

  58. 58.

    K. Li, K. Wang, W. Qin, S. Deng, D. Li, J. Shi, Q. Huang, and C. Fan: DNA-directed assembly of gold nanohalo for quantitative plasmonic imaging of single-particle catalysis. J. Am. Chem. Soc. 137, 4292 (2015).

    CAS  Google Scholar 

  59. 59.

    W. Rechberger, A. Hohenau, A. Leitner, J.R. Krenn, B. Lamprecht, and F.R. Aussenegg: Optical properties of two interacting gold nanoparticles. Opt. Commun. 220, 137 (2003).

    CAS  Google Scholar 

  60. 60.

    S.J. Barrow, X. Wei, J.S. Baldauf, A.M. Funston, and P. Mulvaney: The surface plasmon modes of self-assembled gold nanocrystals. Nat. Commun. 3, 1275 (2012).

    Google Scholar 

  61. 61.

    N. Pazos-Perez, C.S. Wagner, J.M. Romo-Herrera, L.M. Liz-Marzán, F.J. García De Abajo, A. Wittemann, A. Fery, and R.A. Alvarez-Puebla: Organized plasmonic clusters with high coordination number and extraordinary enhancement in surface-enhanced Raman scattering (SERS). Angew. Chem. Int. Ed. 51, 12688 (2012).

    CAS  Google Scholar 

  62. 62.

    I. Choi, H.D. Song, S. Lee, Y.I. Yang, T. Kang, and J. Yi: Core-satellites assembly of silver nanoparticles on a single gold nanoparticle via metal ion-mediated complex. J. Am. Chem. Soc. 134, 12083 (2012).

    CAS  Google Scholar 

  63. 63.

    D. Radziuk, R. Schuetz, A. Masic, and H. Moehwald: Chemical imaging of live fibroblasts by SERS effective nanofilm. Phys. Chem. Chem. Phys. 16, 24621 (2014).

    CAS  Google Scholar 

  64. 64.

    J.F. Herrmann, F. Kretschmer, S. Hoeppener, C. Höppener, and U.S. Schubert: Ordered arrangement and optical properties of silica-stabilized gold nanoparticle–PNIPAM core–satellite clusters for sensitive Raman detection. Small 13, 1701095 (2017).

    Google Scholar 

  65. 65.

    J. Prasad, I. Zins, R. Branscheid, J. Becker, A.H.R. Koch, G. Fytas, U. Kolb, and C. Sönnichsen: Plasmonic core–satellite assemblies as highly sensitive refractive index sensors. J. Phys. Chem. C 119, 5577 (2015).

    CAS  Google Scholar 

  66. 66.

    M. Li, S.K. Cushing, Q. Wang, X. Shi, L.A. Hornak, Z. Hong, and N. Wu: Size-dependent energy transfer between CdSe/ZnS quantum dots and gold nanoparticles. J. Phys. Chem. Lett. 2, 2125 (2011).

    CAS  Google Scholar 

  67. 67.

    U. Uddayasankar and U.J. Krull: Energy transfer assays using quantum dot-gold nanoparticle complexes: optimizing oligonucleotide assay configuration using monovalently conjugated quantum dots. Langmuir 31, 8194 (2015).

    CAS  Google Scholar 

  68. 68.

    E. Chang, J.S. Miller, J. Sun, W.W. Yu, V.L. Colvin, R. Drezek, and J.L. West: Protease-activated quantum dot probes. Biochem. Biophys. Res. Commun. 334, 1317 (2005).

    CAS  Google Scholar 

  69. 69.

    P. Anger, P. Bharadwaj, and L. Novotny: Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 96, 017402 (2006).

    Google Scholar 

  70. 70.

    D. Nepal, L.F. Drummy, S. Biswas, K. Park, and R.A. Vaia: Large scale solution assembly of quantum dot-gold nanorod architectures with plasmon enhanced fluorescence. ACS Nano 7, 9064 (2013).

    CAS  Google Scholar 

  71. 71.

    Y. Fu, J. Zhang, and J.R. Lakowicz: Silver-enhanced fluorescence emission of single quantum dot nanocomposites. Chem. Commun. 313 (2009).

    Google Scholar 

  72. 72.

    D.B. Ingram, P. Christopher, J.L. Bauer, and S. Linic: Predictive model for the design of plasmonic metal/semiconductor composite photocatalysts. ACS Catal. 1, 1441 (2011).

    CAS  Google Scholar 

  73. 73.

    V. Ponsinet, P. Barois, S.M. Gali, P. Richetti, J.B. Salmon, A. Vallecchi, M. Albani, A. Le Beulze, S. Gomez-Grana, E. Duguet, S. Mornet, and M. Treguer-Delapierre: Resonant isotropic optical magnetism of plasmonic nanoclusters in visible light. Phys. Rev. B 92, 220414 (2015).

    Google Scholar 

  74. 74.

    L.Y.T. Chou, K. Zagorovsky, and W.C.W. Chan: DNA assembly of nanoparticle superstructures for controlled biological delivery and elimination. Nat. Nanotechnol. 9, 148 (2014).

    CAS  Google Scholar 

Download references

Acknowledgment

C.R. acknowledges support from the Leopoldina Fellowship Programme, German National Academy of Sciences Leopoldina (Project No. LPDR 2019-01).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christian Rossner.

Additional information

Dedicated to Michael Buback on the occasion of his 75th birthday.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rossner, C., Fery, A. Planet-satellite nanostructures from inorganic nanoparticles: from synthesis to emerging application. MRS Communications 10, 112–122 (2020). https://doi.org/10.1557/mrc.2019.163

Download citation