Skip to main content

Enhanced light-matter interactions in size tunable graphene-gold nanomesh


A hybrid graphene-gold nanomesh, realized through Au deposition on a patterned graphene nanomesh with a focused ion beam, is introduced and illustrated for enhanced light absorption in the visible spectrum. Numerical studies reveal that the hybrid nanomesh with dual resonances in the visible spectrum exhibit ~50% light absorption and enhancement factor as high as ~1 × 108. The simulations also show that the enhanced optical absorption is associated with the excitation of surface Plasmons. This is confirmed through the localization of electric fields at the resonant wavelengths. Such a hybrid graphene-gold nanomesh exhibiting enhanced light-matter interactions paves the way toward plasmonics, surface-enhanced Raman scattering applications, etc.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4


  1. 1.

    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov: Electric field effect in atomically thin carbon films. Science 306, 666 (2004).

    CAS  Article  Google Scholar 

  2. 2.

    F. Banhart, J. Kotakoski, and A.V. Krasheninnikov: Structural defects in graphene. ACS Nano 5, 26 (2011).

    CAS  Article  Google Scholar 

  3. 3.

    M. Dvorak, W. Oswald, and Z. Wu: Bandgap opening by patterning graphene. Sci. Rep. 3, 2289 (2013).

    Article  Google Scholar 

  4. 4.

    M.Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim: Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).

    Article  Google Scholar 

  5. 5.

    J. Bai, X. Zhong, S. Jiang, Y. Huang, and X. Duan: Graphene nanomesh. Nat. Nano 5, 190 (2010).

    CAS  Article  Google Scholar 

  6. 6.

    A. Sinitskii, J.M. Tour, and J. Am: Patterning Graphene through the self-assembled templates: toward periodic two-dimensional graphene nanostructures with semiconductor properties. Chem. Soc. 132, 14730 (2010).

    CAS  Article  Google Scholar 

  7. 7.

    T. Zhang, S. Wu, R. Yang, and G. Zhang: Graphene: nanostructure engineering and applications. Front. Phys. 12, 127206 (2017).

    Article  Google Scholar 

  8. 8.

    K.K. Gopalan, B. Paulillo, D.M.A. Mackenzie, D. Rodrigo, N. Bareza, P.R. Whelan, A. Shivayogimath, and V. Pruneri: Scalable and tunable periodic graphene nanohole arrays for mid-infrared plasmonics. Nano Lett. 18, 5913 (2018).

    CAS  Article  Google Scholar 

  9. 9.

    Z. Zhan, L. Liu, W. Wang, Z. Cao, A. Martinelli, E. Wang, Y. Cao, J. Chen, A. Yurgens, and J. Sun: Ultrahigh surface-enhanced Raman scattering of graphene from Au/Graphene/Au sandwiched structures with subnanometer gap. Adv. Opt. Mater. 4, 2021 (2016).

    CAS  Article  Google Scholar 

  10. 10.

    F. Bonaccorso, Z. Sun, T. Hasan, and A.C. Ferrari: Graphene photonics and optoelectronics. Nat. Photon 4, 611 (2010).

    CAS  Article  Google Scholar 

  11. 11.

    Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P.M. Ajayan, P. Nordlander, N.J. Halas, and F.J. García de Abajo: Gated tunability and hybridization of localized plasmons in nanostructured graphene. ACS Nano 7, 2388 (2013).

    CAS  Article  Google Scholar 

  12. 12.

    Y. Li, K. Burnham, J. Dykes, and N. Chopra: Self-patterning of graphene-encapsulated gold nanoparticles for surface-enhanced Raman spectroscopy. MRS Commun. 8, 79 (2018).

    CAS  Article  Google Scholar 

  13. 13.

    L. Liao, Y.-C. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, K.L. Wang, Y. Huang, and X. Duan: High-speed graphene transistors with a self-aligned nanowire gate. Nature 467, 305 (2010).

    CAS  Article  Google Scholar 

  14. 14.

    J.C. Reed, H. Zhu, A.Y. Zhu, C. Li, and E. Cubukcu: Graphene-enabled silver nanoantenna sensors. Nano Lett. 12, 4090 (2012).

    CAS  Article  Google Scholar 

  15. 15.

    J. Li, C. Zheng, B. Liu, T. Chou, Y. Kim, S. Qiu, J. Li, W. Yan, and J. Fu: Controlled graphene encapsulation: a nanoscale shield for characterising single bacterial cells in liquid. Nanotechnology 29, 365705 (2018).

    Article  Google Scholar 

  16. 16.

    V.R. Adineh, C. Zheng, Q. Zhang, R.K.W. Marceau, B. Liu, Y. Chen, K.J. Si, M. Weyland, T. Velkov, W. Cheng, J. Li, and J. Fu: Graphene-enhanced 3D chemical mapping of biological specimens at near-atomic resolution. Adv. Funct. Mater. 28, 1801439 (2018).

    Article  Google Scholar 

  17. 17.

    J.P. Fried, J.L. Swett, X. Bian, and J.A. Mol: Challenges in fabricating graphene nanodevices for electronic DNA sequencing. MRS Commun. 8, 703 (2018).

    CAS  Article  Google Scholar 

  18. 18.

    V. Garg, T. Chou, A. Liu, A.D. Marco, B. Kamaliya, S. Qiu, R.G. Mote, and J. Fu: Weaving nanostructures with site-specific ion Induced bidirectional bending. Nanoscale Adv. 1, 3067 (2019).

    CAS  Article  Google Scholar 

  19. 19.

    N.J. Briot and T.J. Balk: Focused Ion beam characterization of deformation resulting from nanoindentation of nanoporous gold. MRS Commun. 8, 132 (2018).

    CAS  Article  Google Scholar 

  20. 20.

    V. Garg, S. Zhang, R.G. Mote, Y. Chen, L. Cao, and J. Fu: “Stand-Out”: a novel approach for preparing sub-100 nm samples through in situ ion induced bending. Microsc. Microanal. 25, 898 (2019).

    Article  Google Scholar 

  21. 21.

    N. Stehling, R. Masters, Y. Zhou, R. O’Connell, C. Holland, H. Zhang, and C. Rodenburg: New perspectives on nano-engineering by secondary electron spectroscopy in the helium ion and scanning electron microscope. MRS Commun. 8, 226 (2018).

    CAS  Article  Google Scholar 

  22. 22.

    V. Garg, R.G. Mote, and J. Fu: Focused ion beam direct fabrication of subwavelength nanostructures on silicon for multicolor generation. Adv. Mater. Technol. 3, 1800100 (2018).

    Article  Google Scholar 

  23. 23.

    V. Garg, R.G. Mote, and J. Fu: Focused ion beam fabrication: process development and optimization Strategy for optical applications. In Precision Product-Process Design and Optimization, edited by S. S. Pande, and U. S. Dixit (Springer, Singapore, 2018) pp. 189–209.

    Chapter  Google Scholar 

  24. 24.

    V. Garg, R.G. Mote, and J. Fu: Rapid prototyping of highly ordered subwavelength silicon nanostructures with enhanced light trapping. Opt. Mater. 94, 75 (2019).

    CAS  Article  Google Scholar 

  25. 25.

    J. Buchheim, R.M. Wyss, I. Shorubalko, and H.G. Park: Understanding the interaction between energetic ions and freestanding graphene towards practical 2D perforation. Nanoscale 8, 8345 (2016).

    CAS  Article  Google Scholar 

  26. 26.

    K. Celebi, J. Buchheim, R.M. Wyss, A. Droudian, P. Gasser, I. Shorubalko, J.-I. Kye, C. Lee, and H.G. Park: Ultimate permeation across atomically thin porous graphene. Science 344, 289 (2014).

    CAS  Article  Google Scholar 

  27. 27.

    L.A. Falkovsky: Optical properties of graphene. J. Phys. Conf. Ser. 129, 012004 (2008).

    Article  Google Scholar 

  28. 28.

    H. Gao, J. Henzie, and T.W. Odom: Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays. Nano Lett. 6, 2104 (2006).

    CAS  Article  Google Scholar 

  29. 29.

    Y. Zhao, X. Li, Y. Du, G. Chen, Y. Qu, J. Jiang, and Y. Zhu: Plasmonic-enhanced Raman scattering of graphene on growth substrates and Its application in SERS. Nanoscale 6, 13754 (2014).

    CAS  Article  Google Scholar 

  30. 30.

    J. Hao, L. Zhou, and M. Qiu: Nearly total absorption of light and heat generation by plasmonic metamaterials. Phys. Rev. B 83, 165107 (2011).

    Article  Google Scholar 

  31. 31.

    M. Song, Z.A. Kudyshev, H. Yu, A. Boltasseva, V.M. Shalaev, and A.V. Kildishev: Achieving full-color generation with polarization-tunable perfect light absorption. Opt. Mater. Express 9, 779 (2019).

    CAS  Article  Google Scholar 

  32. 32.

    G. Perrakis, O. Tsilipakos, G. Kenanakis, M. Kafesaki, C.M. Soukoulis, and E.N. Economou: Perfect optical absorption with nanostructured metal films: design and experimental demonstration. Opt. Express 27, 6842 (2019).

    CAS  Article  Google Scholar 

  33. 33.

    J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, and S. Roth: The structure of suspended graphene sheets. Nature 446, 60 (2007).

    CAS  Article  Google Scholar 

  34. 34.

    Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y.K. Gun’Ko, J.J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A.C. Ferrari, and J.N. Coleman: High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3, 563 (2008).

    CAS  Article  Google Scholar 

  35. 35.

    S. Hang, Z. Moktadir, and H. Mizuta: Raman study of damage extent in graphene nanostructures carved by high energy helium ion beam. Carbon 72, 233 (2014).

    CAS  Article  Google Scholar 

Download references


The work was financially supported by the IITB-Monash Research Academy, IRCC (Seed grant, Spons/ME/I14079-1/2014), the Indian Institute of Technology Bombay, and the Monash Engineering Seed Fund. Vivek Garg is sponsored by the Tata Consultancy Services (TCS) research scholarship. The facilities at Melbourne Centre for Nanofabrication (MCN), Monash Centre for Electron Microscopy (MCEM), Victorian Node of the Australian National Fabrication Facility (ANFF), and Monash Campus Cluster (MCC) are acknowledged. The authors thank Dr. Yu Chen, MCEM staff, for TEM characterization.

Author information



Corresponding author

Correspondence to Rakesh G. Mote.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Garg, V., Kamaliya, B., Mote, R.G. et al. Enhanced light-matter interactions in size tunable graphene-gold nanomesh. MRS Communications 10, 135–140 (2020).

Download citation