Skip to main content

A perspective on overcoming water-related stability challenges in molecular and hybrid semiconductors

Abstract

Molecular semiconductors synergize a variety of uniquely advantageous properties such as excellent absorption and emission properties, soft and deformable mechanical properties, and mixed ionic and electrical conduction. Over the past two decades, this outstanding set of features has put molecular semiconductors in the spotlight for a variety of optoelectronics and sensing applications. When it comes to mass-market adaptation, however, a challenge in these soft and van der Waals-bonded materials remains their electrical as well as environmental stability and degradation. This Prospective will summarize some of our current understanding of why organic semiconductors degrade with a strong emphasis put on the quintessential role played by water in this process. Furthermore, it will be revisited by which mechanisms water-related stability shortcomings might be addressed in the future and how these lessons can be translated to relevant hybrid systems such as perovskites and carbon nanotubes. Throughout this discussion, some parallels and key differences between organic and hybrid materials will be highlighted, and it will be elaborated on how this affects the associated device stability.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

References

  1. 1.

    S. Himmelberger and A. Salleo: Engineering semiconducting polymers for efficient charge transport. MRS Commun. 5, 1–13 (2015). 10.1557/mrc.2015.44

    Google Scholar 

  2. 2.

    D. Venkateshvaran, M. Nikolka, A. Sadhanala, V. Lemaur, M. Zelazny, M. Kepa, M. Hurhangee, A.J. Kronemeijer, V. Pecunia, I. Nasrallah, I. Romanov, K. Broch, I. Mcculloch, D. Emin, Y. Olivier, J. Cornil, D. Beljonne, and H. Sirringhaus: Approaching disorder-free transport in high-mobility conjugated polymers. Nature 515, 384–388 (2014). 10.1038/nature13854

    CAS  Google Scholar 

  3. 3.

    V. Podzorov, E. Menard, A. Borissov, V. Kiryukhin, J.A. Rogers, and M.E. Gershenson: Intrinsic charge transport on the surface of organic semiconductors. Phys. Rev. Lett. 93, 086602 (2004). 10.1103/PhysRevLett.93.086602

    CAS  Google Scholar 

  4. 4.

    J. Rogers, G. Malliaras, and T. Someya: Biomedical devices go wild. Sci. Adv. 4, 2–4 (2018). 10.1126/sciadv.aav1889

    Google Scholar 

  5. 5.

    D. Baran, R.S. Ashraf, D.A. Hanifi, M. Abdelsamie, N. Gasparini, J.A. Röhr, S. Holliday, A. Wadsworth, S. Lockett, M. Neophytou, C.J.M. Emmott, J. Nelson, C.J. Brabec, A. Amassian, A. Salleo, T. Kirchartz, J.R. Durrant, and I. McCulloch: Reducing the efficiency-stability-cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells. Nat. Mater. 16, 363–369 (2017). 10.1038/nmat4797

    CAS  Google Scholar 

  6. 6.

    S. Li, L. Ye, W. Zhao, H. Yan, B. Yang, D. Liu, W. Li, H. Ade, and J. Hou: A wide band gap polymer with a deep highest occupied molecular orbital level enables 14.2% efficiency in polymer solar cells. J. Am. Chem. Soc. 140, 7159–7167 (2018). 10.1021/jacs.8b02695

    CAS  Google Scholar 

  7. 7.

    R.G. Wilks and M. Bär: Perovskite solar cells: danger from within. Nat. Energy 2, 1–2 (2017). 10.1038/nenergy.2016.204

    Google Scholar 

  8. 8.

    J. Zaumseil: Single-walled carbon nanotube networks for flexible and printed electronics. Semicond. Sci. Technol. 30, 1–20 (2015). 10.1088/0268-1242/30/7/074001

    CAS  Google Scholar 

  9. 9.

    H. Sirringhaus: 25th anniversary article: Organic field-effect transistors: the path beyond amorphous silicon. Adv. Mater. 26, 1319–1335 (2014). 10.1002/adma.201304346

    CAS  Google Scholar 

  10. 10.

    M. Nikolka, K. Broch, J. Armitage, D. Hanifi, P.J. Nowack, D. Venkateshvaran, A. Sadhanala, J. Saska, M. Mascal, S.-H. Jung, J. Lee, I. McCulloch, A. Salleo, and H. Sirringhaus: High-mobility, trap-free charge transport in conjugated polymer diodes. Nat. Commun. 10, 2122 (2019). 10.1038/s41467-019-10188-y

    Google Scholar 

  11. 11.

    A. Solanki, S.S. Lim, S. Mhaisalkar, and T.C. Sum: Role of water in suppressing recombination pathways in CH3NH3PbI3 perovskite solar cells. ACS Appl. Mater. Interfaces 11, 25474–25482 (2019). 10.1021/acsami.9b00793

    CAS  Google Scholar 

  12. 12.

    P.A. Bobbert, A. Sharma, S.G.J. Mathijssen, M. Kemerink, and D.M. De Leeuw: Operational stability of organic field-effect transistors. Adv. Mater. 24, 1146–1158 (2012). 10.1002/adma.201104580

    CAS  Google Scholar 

  13. 13.

    A. Savva, C. Cendra, A. Giugni, B. Torre, J. Surgailis, D. Ohayon, A. Giovannitti, I. McCulloch, E. Di Fabrizio, A. Salleo, J. Rivnay, and S. Inal: Influence of water on the performance of organic electrochemical transistors. Chem. Mater. 31, 927–937 (2019). 10.1021/acs.chemmater.8b04335

    CAS  Google Scholar 

  14. 14.

    R. Noriega, J. Rivnay, K. Vandewal, F.P.V. Koch, N. Stingelin, P. Smith, M.F. Toney, and A. Salleo: A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nat. Mater. 12, 1038–1044 (2013). 10.1038/nmat3722

    CAS  Google Scholar 

  15. 15.

    S. Illig, A.S. Eggeman, A. Troisi, L. Jiang, C. Warwick, M. Nikolka, G. Schweicher, S.G. Yeates, Y.H. Geerts, J.E. Anthony, and H. Sirringhaus: Reducing dynamic disorder in small-molecule organic semiconductors by suppressing large-amplitude thermal motions. Nat. Commun. 7, 10736 (2016).

    CAS  Google Scholar 

  16. 16.

    S. Fratini, D. Mayou, and S. Ciuchi: The transient localization scenario for charge transport in crystalline organic materials. Adv. Funct. Mater. 26, 2292–2315 (2016). 10.1002/adfm.201502386

    CAS  Google Scholar 

  17. 17.

    G. Schweicher, G. D’Avino, M.T. Ruggiero, D.J. Harkin, K. Broch, D. Venkateshvaran, G. Liu, A. Richard, C. Ruzié, J. Armstrong, A.R. Kennedy, K. Shankland, K. Takimiya, Y.H. Geerts, J.A. Zeitler, S. Fratini, and H. Sirringhaus: Chasing the “killer” phonon mode for the rational design of low-disorder, high-mobility molecular semiconductors. Adv. Mater. 1902407 (2019). doi:10.1002/adma.201902407.

    Google Scholar 

  18. 18.

    A. Troisi: Prediction of the absolute charge mobility of molecular semiconductors: the case of rubrene. Adv. Mater. 19, 2000–2004 (2007). 10.1002/adma.200700550

    CAS  Google Scholar 

  19. 19.

    H. Iino, T. Usui, and J.I. Hanna: Liquid crystals for organic thin-film transistors. Nat. Commun. 6, 1–8 (2015).

    Google Scholar 

  20. 20.

    F. Steiner, C. Poelking, D. Niedzialek, D. Andrienko, and J. Nelson: Influence of orientation mismatch on charge transport across grain boundaries in tri-isopropylsilylethynyl (TIPS) pentacene thin films. Phys. Chem. Chem. Phys. 19, 10854–10862 (2017). 10.1039/C6CP06436A

    CAS  Google Scholar 

  21. 21.

    Y. Yamashita, F. Hinkel, T. Marszalek, W. Zajaczkowski, W. Pisula, M. Baumgarten, H. Matsui, K. Mu, and J. Takeya: Mobility exceeding 10 cm2/(V·s) in donor-acceptor polymer transistors with band-like charge transport. Chem. Mater. 28, 420–424 (2016). 10.1021/acs.chemmater.5b04567

    CAS  Google Scholar 

  22. 22.

    T.H. Thomas, D.J. Harkin, A.J. Gillett, V. Lemaur, M. Nikolka, A. Sadhanala, J.M. Richter, J. Armitage, H. Chen, I. McCulloch, S.M. Menke, Y. Olivier, D. Beljonne, and H. Sirringhaus: Short contacts between chains enhancing luminescence quantum yields and carrier mobilities in conjugated copolymers. Nat. Commun. 10, 2614 (2019). 10.1038/s41467-019-10277-y

    Google Scholar 

  23. 23.

    V. Abramavicius, V. Pranculis, A. Melianas, O. Inganäs, and V. Gulbinas: Role of coherence and delocalization in photo-induced electron transfer at organic interfaces. Sci. Rep. 6, 32914 (2016). 10.1038/srep32914

    CAS  Google Scholar 

  24. 24.

    S.P. Senanayak, B. Yang, T.H. Thomas, N. Giesbrecht, W. Huang, E. Gann, B. Nair, K. Goedel, S. Guha, X. Moya, C.R. McNeill, P. Docampo, A. Sadhanala, R.H. Friend, and H. Sirringhaus: Understanding charge transport in lead iodide perovskite thin-film field-effect transistors. Sci. Adv. 3, 1–11 (2017). 10.1126/sciadv.1601935

    Google Scholar 

  25. 25.

    M.B. Johnston and L.M. Herz: Hybrid perovskites for photovoltaics: charge-carrier recombination, diffusion, and radiative efficiencies. Acc. Chem. Res. 49, 146–154 (2016). 10.1021/acs.accounts.5b00411

    CAS  Google Scholar 

  26. 26.

    J. Zaumseil: Semiconducting single-walled carbon nanotubes or very rigid conjugated polymers: a comparison. Adv. Electron. Mater. 5, 1800514 (2018). 10.1002/aelm.201800514

    Google Scholar 

  27. 27.

    M. Brohmann, F.J. Berger, M. Matthiesen, S.P. Schießl, S. Schneider, and J. Zaumseil: Charge transport in mixed semiconducting carbon nanotube networks with tailored mixing ratios. ACS Nano 13, 7323–7332 (2019). 10.1021/acsnano.9b03699

    CAS  Google Scholar 

  28. 28.

    N. Karl and J. Marktanner: Electron and hole mobilities in high purity anthracene single crystals. Mol. Cryst. Liq. Cryst. Sci. Technol. A 355, 149–173 (2001). 10.1080/10587250108023659

    CAS  Google Scholar 

  29. 29.

    C. Krellner, S. Haas, C. Goldmann, K.P. Pernstich, D.J. Gundlach, and B. Batlogg: Density of bulk trap states in organic semiconductor crystals: discrete levels induced by oxygen in rubrene. Phys. Rev. B 75, 1–5 (2007). 10.1103/PhysRevB.75.245115

    Google Scholar 

  30. 30.

    C. Goldmann, D.J. Gundlach, and B. Batlogg: Evidence of water-related discrete trap state formation in pentacene single-crystal field-effect transistors. Appl. Phys. Lett. 88, 2004–2007 (2006). 10.1063/1.2171479

    Google Scholar 

  31. 31.

    J. Northrup and M. Chabinyc: Gap states in organic semiconductors: hydrogen- and oxygen-induced states in pentacene. Phys. Rev. B 68, 8–11 (2003). 10.1103/PhysRevB.68.041202

    Google Scholar 

  32. 32.

    U. Kraft, J.E. Anthony, E. Ripaud, M.A. Loth, E. Weber, and H. Klauk: Low-voltage organic transistors based on tetraceno[2,3-b]thiophene: contact resistance and air stability. Chem. Mater. 27, 998–1004 (2015). 10.1021/cm5043183

    CAS  Google Scholar 

  33. 33.

    M. Nikolka, M. Hurhangee, A. Sadhanala, H. Chen, I. Mcculloch, and H. Sirringhaus: Correlation of disorder and charge transport in a range of indacenodithiophene-based semiconducting polymers. Adv. Electron. Mater. 4(10), 1700410, 1–7 (2017).

    Google Scholar 

  34. 34.

    F. von Burkersroda, L. Schedl, and A. Goepferich: Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials 23, 4221–4231 (2002). 10.1016/S0142-9612(02)00170-9

    Google Scholar 

  35. 35.

    P. Boufflet, Y. Han, Z. Fei, N.D. Treat, R. Li, D.M. Smilgies, N. Stingelin, T.D. Anthopoulos, and M. Heeney: Using molecular design to increase hole transport: backbone fluorination in the benchmark material poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]-thiophene (pBTTT). Adv. Funct. Mater. 25, 7038–7048 (2015). 10.1002/adfm.201502826

    CAS  Google Scholar 

  36. 36.

    S. Park, B.T. Lim, B. Kim, H.J. Son, and D.S. Chung: High mobility polymer based on a p-extended benzodithiophene and its application for fast switching transistor and high gain photoconductor. Sci. Rep. 4, 1–9 (2014).

    CAS  Google Scholar 

  37. 37.

    U. Zschieschang, K. Amsharov, M. Jansen, K. Kern, H. Klauk, and R.T. Weitz: Separating the impact of oxygen and water on the long-term stability of n-channel perylene diimide thin-film transistors. Org. Electron. Phys. Mater. Appl. 26, 340–344 (2015).

    CAS  Google Scholar 

  38. 38.

    M. Nikolka, I. Nasrallah, B. Rose, M.K. Ravva, K. Broch, D. Harkin, J. Charmet, M. Hurhangee, A. Brown, S. Illig, P. Too, J. Jongman, I. McCulloch, J.-L. Bredas, and H. Sirringhaus: High operational and environmental stability of high-mobility conjugated polymer field-effect transistors achieved through the use of molecular additives. Nat. Mater. 16, 356–362 (2017). 10.1038/nmat4785

    CAS  Google Scholar 

  39. 39.

    M. Kettner, M. Zhou, J. Brill, P.W.M. Blom, and R.T. Weitz: Complete suppression of bias-induced threshold voltage shift below 273 K in solution-processed high-performance organic transistors. ACS Appl. Mater. Interfaces 10, 35449–35454 (2018). 10.1021/acsami.8b13035

    CAS  Google Scholar 

  40. 40.

    G. Zuo, M. Linares, T. Upreti, and M. Kemerink: General rule for the energy of water-induced traps in organic semiconductors. Nat. Mater. 18, 588–593 (2019). 10.1038/s41563-019-0347-y

    CAS  Google Scholar 

  41. 41.

    N.B. Kotadiya, A. Mondal, P.W.M. Blom, D. Andrienko, and G.-J.A.H. Wetzelaer: A window to trap-free charge transport in organic semiconducting thin films. Nat. Mater. 18, 1182–1186 (2019). 10.1038/s41563-019-0473-6

    CAS  Google Scholar 

  42. 42.

    D.P.K. Tsang and C. Adachi: Operational stability enhancement in organic light-emitting diodes with ultrathin Liq interlayers. Sci. Rep. 6, 1–10 (2016).

    Google Scholar 

  43. 43.

    W. Song and J.Y. Lee: Degradation mechanism and lifetime improvement strategy for blue phosphorescent organic light-emitting diodes. Adv. Opt. Mater. 5, 1600901 (2017).

    Google Scholar 

  44. 44.

    T. Nakayama, K. Hiyama, K. Furukawa, and H. Ohtani: Development of a phosphorescent white OLED with extremely high power efficiency and long lifetime. J. Soc. Inf. Display 16, 231 (2008). 10.1889/1.2841855

    CAS  Google Scholar 

  45. 45.

    H.T. Nicolai, M. Kuik, G.A.H. Wetzelaer, B. de Boer, C. Campbell, C. Risko, J.L. Brédas, and P.W.M. Blom: Unification of trap-limited electron transport in semiconducting polymers. Nat. Mater. 11, 882–887 (2012).

    CAS  Google Scholar 

  46. 46.

    H. Sirringhaus: Device physics of solution-processed organic field-effect transistors. Adv. Mater. 17, 2411–2425 (2005).

    CAS  Google Scholar 

  47. 47.

    W.L. Kalb, S. Haas, C. Krellner, T. Mathis, and B. Batlogg: Trap density of states in small-molecule organic semiconductors: a quantitative comparison of thin-film transistors with single crystals. Phys. Rev. B 81, 155315 (2010).

    Google Scholar 

  48. 48.

    B.S.G.J. Mathijssen, M. Cölle, H. Gomes, E.C.P. Smits, B. De Boer, I. Mcculloch, P.A. Bobbert, and D.M. De Leeuw: Dynamics of threshold voltage shifts in organic and amorphous silicon field-effect transistors. Adv. Mater. 19, 2785–2789 (2007).

    CAS  Google Scholar 

  49. 49.

    J. Rivnay, S. Inal, A. Salleo, M. Berggren, and G.G. Malliaras: Organic electrochemical transistors. Nat. Rev. Mater. 3, 17086 (2018).

    CAS  Google Scholar 

  50. 50.

    A. Giovannitti, C.B. Nielsen, D.T. Sbircea, S. Inal, M. Donahue, M.R. Niazi, D.A. Hanifi, A. Amassian, G.G. Malliaras, J. Rivnay, and I. McCulloch: N-type organic electrochemical transistors with stability in water. Nat. Commun. 7, 1–9 (2016).

    Google Scholar 

  51. 51.

    R.A. Green, N.H. Lovell, and L.A. Poole-Warren: Cell attachment functionality of bioactive conducting polymers for neural interfaces. Biomaterials 30, 3637–3644 (2009).

    CAS  Google Scholar 

  52. 52.

    E.M. Thaning, M.L.M. Asplund, T.A. Nyberg, O.W. Inganäs, and H. Von Holst: Stability of poly(3,4-ethylene dioxythiophene) materials intended for implants. J. Biomed. Mater. Res. B 93, 407–415 (2010).

    Google Scholar 

  53. 53.

    M. Asplund, T. Nyberg, and O. Inganäs: Electroactive polymers for neural interfaces. Polym. Chem. 1, 1374–1391 (2010).

    CAS  Google Scholar 

  54. 54.

    S.M. Kim, C.H. Kim, Y. Kim, N. Kim, W.J. Lee, E.H. Lee, D. Kim, S. Park, K. Lee, J. Rivnay, and M.H. Yoon: Influence of PEDOT:PSS crystallinity and composition on electrochemical transistor performance and long-term stability. Nat. Commun. 9, 385 (2018).

    Google Scholar 

  55. 55.

    L.Q. Flagg, C.G. Bischak, J.W. Onorato, R.B. Rashid, C.K. Luscombe, and D.S. Ginger: Polymer crystallinity controls water uptake in glycol side-chain polymer organic electrochemical transistors. J. Am. Chem. Soc. 141, 4345–4354 (2019).

    CAS  Google Scholar 

  56. 56.

    R. Colucci, G.C. Faria, L.F. Santos, and G. Gozzi: On the charge transport mechanism of cross-linked PEDOT:PSS films. J. Mater. Sci. Mater. Electron. 30, 16864–16872 (2019).

    CAS  Google Scholar 

  57. 57.

    C. Duc, A. Vlandas, G.G. Malliaras, and V. Senez: Wettability of PEDOT:PSS films. Soft Matter 12, 5146–5153 (2016).

    CAS  Google Scholar 

  58. 58.

    C. Cendra, A. Giovannitti, A. Savva, V. Venkatraman, I. McCulloch, A. Salleo, S. Inal, and J. Rivnay: Role of the anion on the transport and structure of organic mixed conductors. Adv. Funct. Mater. 29, 1–11 (2019).

    Google Scholar 

  59. 59.

    Q. Zhang, F. Leonardi, S. Casalini, I. Temiño, and M. Mas-Torrent: High performing solution-coated electrolyte-gated organic field-effect transistors for aqueous media operation. Sci. Rep. 6, 1–10 (2016).

    Google Scholar 

  60. 60.

    L. Kergoat, L. Herlogsson, D. Braga, B. Piro, M.C. Pham, X. Crispin, M. Berggren, and G. Horowitz: A water-gate organic field-effect transistor. Adv. Mater. 22, 2565–2569 (2010).

    CAS  Google Scholar 

  61. 61.

    E. Macchia, K. Manoli, B. Holzer, C. Di Franco, M. Ghittorelli, F. Torricelli, D. Alberga, G.F. Mangiatordi, G. Palazzo, G. Scamarcio, and L. Torsi: Single-molecule detection with a millimetre-sized transistor. Nat. Commun. 9 (2018).

  62. 62.

    M.Y. Mulla, E. Tuccori, M. Magliulo, G. Lattanzi, G. Palazzo, K. Persaud, and L. Torsi: Capacitance-modulated transistor detects odorant binding protein chiral interactions. Nat. Commun. 6, 6010 (2015).

    CAS  Google Scholar 

  63. 63.

    K. Schmoltner, J. Kofler, A. Klug, and E.J.W. List-Kratochvil: Electrolyte-gated organic field-effect transistor for selective reversible ion detection. Adv. Mater. 25, 6895–6899 (2013).

    CAS  Google Scholar 

  64. 64.

    M. Nikolka, G. Schweicher, J. Armitage, I. Nasrallah, C. Jellett, Z. Guo, M. Hurhangee, A. Sadhanala, I. McCulloch, C.B. Nielsen, and H. Sirringhaus: Performance improvements in conjugated polymer devices by removal of water-induced traps. Adv. Mater. 30, 1801874 (2018).

    Google Scholar 

  65. 65.

    I.N. Hulea, H.B. Brom, A.J. Houtepen, D. Vanmaekelbergh, J.J. Kelly, and E.A. Meulenkamp: Wide energy-window view on the density of states and hole mobility in poly(p-phenylene vinylene). Phys. Rev. Lett. 93, 166601 (2004).

    CAS  Google Scholar 

  66. 66.

    D. Abbaszadeh, A. Kunz, G.A.H. Wetzelaer, J.J. Michels, N.I. Craciun, K. Koynov, I. Lieberwirth, and P.W.M. Blom: Elimination of charge carrier trapping in diluted semiconductors. Nat. Mater. 15, 628–633 (2016).

    CAS  Google Scholar 

  67. 67.

    X. Jia, C. Fuentes-hernandez, C. Wang, Y. Park, and B. Kippelen: Stable organic thin-film transistors. Sci. Adv. 4, 1–8 (2018).

    Google Scholar 

  68. 68.

    R. Paetzold, A. Winnacker, D. Henseler, V. Cesari, and K. Heuser: Permeation rate measurements by electrical analysis of calcium corrosion. Rev. Sci. Instrum. 74, 5147–5150 (2003).

    CAS  Google Scholar 

  69. 69.

    J.S. Steckel, S.A. Khan, and J.-J.P. Drolet: Display light source with quantum dots. U.S. Patent No. 9,620,686 B2 (2017).

    Google Scholar 

  70. 70.

    I.E. Jacobs, F. Wang, N. Hafezi, C. Medina-Plaza, T.F. Harrelson, J. Li, M.P. Augustine, M. Mascal, and A.J. Moulé: Quantitative dedoping of conductive polymers. Chem. Mater. 29, 832–841 (2017).

    CAS  Google Scholar 

  71. 71.

    C. Wang, C. Fuentes-hernandez, M. Yun, A. Singh, A. Dindar, S. Choi, S. Graham, and B. Kippelen: Organic field-effect transistors with a bilayer gate dielectric comprising an oxide nanolaminate grown by atomic layer deposition. ACS Appl. Mater. Interfaces 8, 29872–29876 (2016).

    CAS  Google Scholar 

  72. 72.

    J. Zhao, W. Tang, Q. Li, W. Liu, and X. Guo: Fully solution processed bottom-gate organic field-effect transistor with steep subthreshold swing approaching the theoretical limit. IEEE Electron Device Lett. 38, 1465–1468 (2017).

    CAS  Google Scholar 

  73. 73.

    C. Wang, W.Y. Lee, D. Kong, R. Pfattner, G. Schweicher, R. Nakajima, C. Lu, J. Mei, T.H. Lee, H.C. Wu, J. Lopez, Y. Diao, X. Gu, S. Himmelberger, W. Niu, J.R. Matthews, M. He, A. Salleo, Y. Nishi, and Z. Bao: Significance of the double-layer capacitor effect in polar rubbery dielectrics and exceptionally stable low-voltage high transconductance organic transistors. Sci. Rep. 5, 1–8 (2015).

    Google Scholar 

  74. 74.

    D. Kong, R. Pfattner, A. Chortos, C. Lu, A.C. Hinckley, C. Wang, W.Y. Lee, J.W. Chung, and Z. Bao: Capacitance characterization of elastomeric dielectrics for applications in intrinsically stretchable thin film transistors. Adv. Funct. Mater. 26, 4680–4686 (2016).

    CAS  Google Scholar 

  75. 75.

    R. Wang, J. Xue, L. Meng, J.-W. Lee, Z. Zhao, P. Sun, L. Cai, T. Huang, and Z. Wang: Caffeine improves the performance and thermal stability of perovskite solar cells. Joule 3, 1464–1477 (2019).

    CAS  Google Scholar 

  76. 76.

    W. Kim, A. Javey, O. Vermesh, Q. Wang, Y. Li, and H. Dai: Hysteresis caused by water molecules in carbon nanotube field-effect transistors. Nano Lett. 3, 193–198 (2003).

    CAS  Google Scholar 

  77. 77.

    S. Wang, Y. Jiang, E.J. Juarez-Perez, L.K. Ono, and Y. Qi: Accelerated degradation of methylammonium lead iodide perovskites induced by exposure to iodine vapour. Nat. Energy 2, 1–8 (2017).

    Google Scholar 

  78. 78.

    N. Berton, F. Lemasson, F. Hennrich, M.M. Kappes, and M. Mayor: Influence of molecular weight on selective oligomer-assisted dispersion of single-walled carbon nanotubes and subsequent polymer exchange. Chem. Commun. 48, 2516–2518 (2012).

    CAS  Google Scholar 

  79. 79.

    L. Tavagnacco, U. Schnupf, P.E. Mason, M.L. Saboungi, A. Cesàro, and J.W. Brady: Molecular dynamics simulation studies of caffeine aggregation in aqueous solution. J. Phys. Chem. B 115, 10957–10966 (2011).

    CAS  Google Scholar 

  80. 80.

    M.S. Arnold, A.A. Green, J.F. Hulvat, S.I. Stupp, and M.C. Hersam: Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 1, 60–65 (2006).

    CAS  Google Scholar 

  81. 81.

    S. Arunachalam, R. Izquierdo, and F. Nabki: Low-hysteresis and fast response time humidity sensors using suspended functionalized carbon nanotubes. Sensors 19, 1–9 (2019).

    Google Scholar 

  82. 82.

    A. Zahab, L. Spina, P. Poncharal, and C. Marlière: Water-vapor effect on the electrical conductivity of a single-walled carbon nanotube mat. Phys. Rev. B 62, 10000–10003 (2000).

    CAS  Google Scholar 

  83. 83.

    D. Estrada, S. Dutta, A. Liao, and E. Pop: Reduction of hysteresis for carbon nanotube mobility measurements using pulsed characterization. Nanotechnology 21, 1–6 (2010).

    Google Scholar 

Download references

Acknowledgments

M.N. acknowledges financial support from the European Commission through a Marie-Curie Individual Fellowship (EC Grant Agreement Number: 747461). M.N. thanks Dr. Deepak Venkateshvaran, Dr. Ulrike Kraft, and Dr. Guillaume Schweicher for help with illustrations and proof reading.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mark Nikolka.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nikolka, M. A perspective on overcoming water-related stability challenges in molecular and hybrid semiconductors. MRS Communications 10, 98–111 (2020). https://doi.org/10.1557/mrc.2019.161

Download citation