Skip to main content

Effect of gravity in the Cassie-to-Wenzel transition on a micropatterned surface

Abstract

When the Cassie-Baxter and Wenzel states coexist for a liquid droplet on a micropatterned surface, the Cassie-to-Wenzel transition takes place if the energy barrier is overcome. Although multiple metastable states coexist due to the micropattern, this paper presents a simple Cassie-to-Wenzel transition of a 2 uL water droplet on a particular micropillared surface: When the droplet is gently deposited above the surface, it equalizes to the Cassie state at zero gravity; however, it transitions to the Wenzel state at the terrestrial gravity, in which the gravitational potential energy overcomes the energy barrier between the Cassie and Wenzel states.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. 1.

    R.N. Wenzel: Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 28, 988 (1936).

    CAS  Article  Google Scholar 

  2. 2.

    A.B.D. Cassie and S. Baxter: Wettability of porous surfaces. Trans. Faraday Soc. 40, 0546 (1944).

    CAS  Article  Google Scholar 

  3. 3.

    A. Kawai and H. Nagata: Wetting behavior of liquid on geometrical rough-surface formed by photolithography. Jpn. J. Appl. Phys. 33, L1283 (1994).

    CAS  Article  Google Scholar 

  4. 4.

    J. Bico, C. Marzolin, and D. Quere: Pearl drops. Europhys. Lett. 47, 220 (1999).

    CAS  Article  Google Scholar 

  5. 5.

    N.A. Patankar: On the modeling of hydrophobic contact angles on rough surfaces. Langmuir 19, 1249 (2003).

    CAS  Article  Google Scholar 

  6. 6.

    B. He, N.A. Patankar, and J. Lee: Multiple equilibrium droplet shapes and design criterion for rough hydrophobic surfaces. Langmuir 19, 4999 (2003).

    CAS  Article  Google Scholar 

  7. 7.

    N.A. Patankar: Transition between superhydrophobic states on rough surfaces. Langmuir 20, 7097 (2004).

    CAS  Article  Google Scholar 

  8. 8.

    G. Whyman and E. Bormashenko: Wetting transitions on rough substrates: general considerations. J. Adhes. Sci. Technol. 26, 207 (2012).

    CAS  Article  Google Scholar 

  9. 9.

    N.A. Patankar: Consolidation of hydrophobic transition criteria by using an approximate energy minimization approach. Langmuir 26, 8941 (2010).

    CAS  Article  Google Scholar 

  10. 10.

    G. Pashos, G. Kokkoris, and A.G. Boudouvis: Minimum energy paths of wetting transitions on grooved surfaces. Langmuir 31, 3059 (2015).

    CAS  Article  Google Scholar 

  11. 11.

    H.Y. Guo, B. Li, and X.Q. Feng: Stability of Cassie-Baxter wetting states on microstructured surfaces. Phys. Rev. E 94, 042801 (2016).

    Article  Google Scholar 

  12. 12.

    T.Q. Liu, Y.J. Li, X.Q. Li, and W. Sun: Theoretical analysis of droplet transition from Cassie to Wenzel state. Chinese Phys. B 24, 116801 (2015).

    Article  Google Scholar 

  13. 13.

    T.Q. Liu, Y.J. Li, X.Q. Li, and W. Sun: Mechanism Study on transition of Cassie droplets to Wenzel State after meniscus touching substrate of pillars. J. Phys. Chem. C 121, 9802 (2017).

    CAS  Article  Google Scholar 

  14. 14.

    C.J. Rohrs, A. Azimi, and P. He: Wetting on micropatterned surfaces: partial penetration in the Cassie State and Wenzel deviation theoretically explained. Langmuir 35, 15421 (2019).

    CAS  Article  Google Scholar 

  15. 15.

    T. Koishi, K. Yasuoka, S. Fujikawa, T. Ebisuzaki, and X.C. Zeng: Coexistence and transition between Cassie and Wenzel state on pillared hydrophobic surface. Proc. Natl. Acad. Sci. USA 106, 8435 (2009).

    CAS  Article  Google Scholar 

  16. 16.

    W. Gong, Y.Q. Zu, S. Chen, and Y.Y. Yan: Wetting transition energy curves for a droplet on a square-post patterned surface. Sci. Bull. 62, 136 (2017).

    CAS  Article  Google Scholar 

  17. 17.

    J.S. Lee, J.Y. Moon, and J.S. Lee: Study of transporting of droplets on heterogeneous surface structure using the lattice Boltzmann approach. Appl. Therm. Eng. 72, 104 (2014).

    Article  Google Scholar 

  18. 18.

    W. Zhang, R.R. Zhang, C.G. Jiang, and C.W. Wu: Effect of pillar height on the wettability of micro-textured surface: volume-of-fluid simulations. Int. J. Adhes. Adhes. 74, 64 (2017).

    CAS  Article  Google Scholar 

  19. 19.

    A. Azimi, P. He, C. Rohrs, and C.W. Yao: Developing a novel continuum model of static and dynamic contact angles in a case study of a water droplet on micro-patterned hybrid substrates. MRS Commun. 8, 1445 (2018).

    CAS  Article  Google Scholar 

  20. 20.

    P. He and C.W. Yao: Simulating contact angle hysteresis using pseudo-line tensions. MRS Commun. 9, 1060 (2019).

    CAS  Article  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the Center for Innovation, Commercialization and Entrepreneurship (CICE) and the Center for Advances in Port Management (CAPM) at Lamar University for supporting this research. We acknowledge the Texas Advanced Computing Center (TACC) at UT Austin for funding computational hours (Grant #G-819854). We thank Dr. Lei Li from the University of Pittsburgh for valuable discussions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ping He.

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2019.160.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Azimi, A., He, P. Effect of gravity in the Cassie-to-Wenzel transition on a micropatterned surface. MRS Communications 10, 129–134 (2020). https://doi.org/10.1557/mrc.2019.160

Download citation