Skip to main content

Quantitative composition determination by Mössbauer spectroscopy

Abstract

Quantitative Fe content determination of powders by Mössbauer spectroscopy is described. In this method, powder samples and internal standard are combined homogeneously in a plastic film ensuring a thin absorber. This method was verified by quantifying the Fe content of a series of samples and independently confirming by inductively coupled plasma optical emission spectroscopic analysis. Additionally, for the first time, Fe contamination in ball-milled Si as a function of milling time was quantified. It was found that Fe contamination increased with time but surprisingly became steady state at 1.12 ± 0.04 at.% Fe after grain size reduction.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3

References

  1. 1.

    J.D. McGraw, M.D. Fleischauer, J.R. Dahn, and R.A. Dunlap: Mössbauer effect and X-ray diffraction investigation of Si-Fe thin films. Philos. Mag. 86, 5017 (2006).

    CAS  Article  Google Scholar 

  2. 2.

    M. Sorescu: A new method for direct determination of the recoilless fraction using a single room-temperature Mössbauer measurement of a two-foil absorber. Mater. Lett. 54, 256 (2002).

    CAS  Article  Google Scholar 

  3. 3.

    I. Nowik, I. Jacob, and R. Moreh: Mössbauer study of crystallographic and magnetic phase transition, phonon softening, and hyperfine interactions in Zr(AlxFe1-x)2. Phys. Rev. B 47, 723 (1993).

    CAS  Article  Google Scholar 

  4. 4.

    M. Allwes, M. Mekaoui, and M. Sorescu: Mutual solubility of scandium oxide-hematite magnetic nanocomposites: Mössbauer spectroscopy investigation. Solid State Commun. 261, 46 (2017).

    CAS  Article  Google Scholar 

  5. 5.

    P.I. Arredondos, C.A. Barrero, K.E. Garcia, and J.M. Greneche: Enhancing the possibilities of 57Fe Mössbauer spectrometry to the study of chemical and physical properties of iron in medicines. Polyhedron 105, 27 (2016).

    CAS  Article  Google Scholar 

  6. 6.

    T.D. Hatchard, A. Genkin, and M.N. Obrovac: Rapid mechanochemical synthesis of amorphous alloys. AIP Adv. 7, 045201 (2017).

    Article  Google Scholar 

  7. 7.

    F.E. Smith and E.A. Arsenault: Microwave-assisted sample preparation in analytical chemistry. Talanta 43, 1207 (1996).

    CAS  Article  Google Scholar 

  8. 8.

    J.-M. Tarascon, A.S. Gozdz, C. Schmutz, F. Shokoohi, and P.C. Warren: Performance of Bellcore’s plastic rechargeable Li-ion batteries. Solid State Ionics 86–88, 49 (1996).

    Article  Google Scholar 

  9. 9.

    M.N. Richard: A cell for in situ X-ray diffraction based on coin cell hardware and Bellcore plastic electrode technology. J. Electrochem. Soc. 144, 554 (1997).

    CAS  Article  Google Scholar 

  10. 10.

    M.N. Obrovac and V.L. Chevrier: Alloy negative electrodes for Li-ion batteries. Chem. Rev. 114, 11444 (2014).

    CAS  Article  Google Scholar 

  11. 11.

    M. Gauthier, D. Mazouzi, D. Reyter, B. Lestriez, P. Moreau, D. Guyomard, and L. Roué: A low-cost and high performance ball-milled Si-based negative electrode for high-energy Li-ion batteries. Energy Environ. Sci. 6, 2145 (2013).

    CAS  Article  Google Scholar 

  12. 12.

    G.K. Wertheim, J.H. Wernick, and D.N.E. Buchanan: Mössbauer effect in Co1-xFezSi. J. Appl. Phys. 37, 3333 (1966).

    CAS  Article  Google Scholar 

  13. 13.

    J. Desimoni and F.H. Sánchez: Overview of the Mössbauer results obtained on silicon-rich iron silicide epitaxial phases on Si. Hyperfine Interact. 122, 277 (1999).

    CAS  Article  Google Scholar 

  14. 14.

    I. Dézsi, C. Fetzer, L. Bujdosó, J. Brötz, and A.G. Balogh: Mechanical alloying of Fe–Si and milling of a- and ß-FeSi2 bulk phases. J. Alloys Compd. 508, 51 (2010).

    Article  Google Scholar 

  15. 15.

    M.S. El-Eskandarany, K. Aoki, and K. Suzuki: Rod milling for solid-state formation of Al30Ta70 amorphous alloy powder. J. Less Common Met. 167, 113 (1990).

    CAS  Article  Google Scholar 

Download references

Acknowledgment

The authors acknowledge financial support from NSERC, Novonix, 3M Canada, the Canada Foundation for Innovation, and the Atlantic Innovation Fund for this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. N. Obrovac.

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2019.158.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Scott, B., Brown, C.A.M., Dunlap, R.A. et al. Quantitative composition determination by Mössbauer spectroscopy. MRS Communications 10, 123–128 (2020). https://doi.org/10.1557/mrc.2019.158

Download citation