Skip to main content

Flexible, stretchable, conformal electronics, and smart textiles: environmental life cycle considerations for emerging applications


The development of flexible, stretchable, conformai electronics, and smart textiles for wearables and other applications by now lacks a guidance toward environmentally benign product concepts. This article facilitates understanding of environmental implications of material choices and design decisions to help material scientists and product developers alike to consider sustainability implications of their research, innovation, and development. The more such electronics enter the market, the more these composite products will emerge as an ecological problem, unless appropriate measures are taken at the early research stage.

This is a preview of subscription content, access via your institution.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Table I.
Table II.
Table III.
Figure 6.
Table IV.


  1. 1.

    C. Kallmayer and T. Löher: Conformable electronics - formbare elektronik. PLUS. Prod. Leiterplatten Sys. 19, 728–732 (2017).

    Google Scholar 

  2. 2.

    K. Ghaffarzadeh, J. Hayward, and X. He: Stretchable and Conformal Electronics 2019–2029 - Materials, Components, Products and 10-Year Market Outlook (IDTechEx, Boston, MA, 2018).

    Google Scholar 

  3. 3.

    J. Wang and P.S. Lee: Progress and prospects in stretchable electroluminescent devices. Nanophotonics 6, 435–451 (2017).

    Google Scholar 

  4. 4.

    R. Das: Flexible, Printed and Organic Electronics 2019–2029: Forecasts, Players & Opportunities (IDTechEx, Boston, MA, 2018).

    Google Scholar 

  5. 5.

    International Organization for Standardization: ISO 14040:2006. Environmental management–Life cycle assessment–Principles and framework.

  6. 6.

    International Organization for Standardization: ISO 14044:2006. Environmental management–Life cycle assessment–Requirements and guidelines.

  7. 7.

    M. Cossutta, J. McKechnie, and S.J. Pickering: A comparative LCA of different graphene production routes. Green Chem. 19, 5874–5884 (2017).

    CAS  Google Scholar 

  8. 8.

    Fraunhofer IZM, Fraunhofer IAP, Technische Universität Berlin, Universität Bayreuth, KSG Leiterplatten, KOENEN, TECNARO, H. Hiendl, LOEWE Opta: Verbundvorhaben: Lignin als nachwachsender Rohstoff für Anwendungen in der Elektronik (joint research project: Lignin–A Renewable Resource for Electronic Applications) final report, 2015, pp. 153–155.

  9. 9.

    M. Buyle, A. Audenaert, P. Billen, K. Boonen, and S. Van Passel: The future of ex-ante LCA? Lessons learned and practical recommendations. Sustainability 11, 13 (2019).

    Google Scholar 

  10. 10.

    T. Walser, E. Demou, D.J. Lang, and S. Hellweg: Prospective environmental life cycle assessment of nanosilver T-shirts. Environ. Sci. Technol. 45, 4570–4578 (2011).

    CAS  Google Scholar 

  11. 11.

    N.M. van der Velden, K. Kuusk, and A.R. Köhler: Life cycle assessment and eco-design of smart textiles: the importance of material selection demonstrated through e-textile product redesign. Mater. Des. 84, 313–324 (2015).

    Google Scholar 

  12. 12.

    M.M.M. Ma, Z. Zhu, and Y.C. Chan: Environmental impact analysis of smartwatch using SimaPro8 tools and energy dispersive X-ray spectroscopy (EDX) technique. In Proc. of 2017 IEEE 19th Electronics Packaging Technology Conference (EPTC), 6–9 September 2017, Singapore.

    Google Scholar 

  13. 13.

    J. Sitek, G. Koziol, M. Koscielski, W. Steplewski, A. Arazna, A. Girulska, A. Dobon, A.S. Le Meur, M. Ventura, I. Ajuriagoxeascoa, M. Saint-Mard, K. Schischke, M. Anzizu, P. Arranz, C. Diver, R. Pamminger, F. Krautzer, W. Wimmer, N.M. van der Velden, A.R. Köhler, and C. Lauterbach: Deliverable D4.2 - Scientific Case Study Reports and Evaluations, ILCD datasets, Case Study: Future-shape; Project LCA to go, 2013.

    Google Scholar 

  14. 14.

    J. Vogtländer, H. Brezet, and C.F. Hendriks: The virtual eco-costs ’99 A single LCA-based indicator for sustainability and the eco-costs-value ratio (EVR) model for economic allocation. Int. J. Life Cycle Assess. 6, 157–166 (2001).

    Google Scholar 

  15. 15.

    M. Proske, C. Clemm, and N. Richter: Life Cycle Assessment of the Fairphone 2 - Final Report; Fraunhofer IZM: Berlin, 2016.

    Google Scholar 

  16. 16.

    Apple Inc.: Product Environmental Report - Apple Watch Series 5, 2019.

  17. 17.

    P. Nuss and M.J. Eckelman: Life cycle assessment of metals: a scientific synthesis. PLoS ONE 9, 5 (2014).

    Google Scholar 

  18. 18.

    M. Slotte, G. Metha, and R. Zevenhoven: Life cycle indicator comparison of copper, silver, zinc and aluminum nanoparticle production through electric arc evaporation or chemical reduction. Int. J. Energy Environ. 6, 233–243 (2015).

    CAS  Google Scholar 

  19. 19.

    T. Lindstad, B. Monsen, and K.S. Osen: How the ferroalloys industry can meet greenhouse gas regulations. In Proc. of the Twelfth International Ferroalloys Congress Sustainable Future, 6–9 June 2010, Helsinki, Finland, pp. 63–70.

    Google Scholar 

  20. 20.

    Umweltbundesamt, Internationale Institut für Nachhaltigkeitsanalysen und —strategien (IINAS): Prozessorientierte Basisdaten für Umweltmanagement-Instrumente (ProBas). (accessed April 24, 2019).

    Google Scholar 

  21. 21.

    European Copper Institute: Life Cycle Assessment Data–Copper Wire. (accessed June 20, 2019).

    Google Scholar 

  22. 22.

    R. García-Valverde, J.A. Cherni, and A. Urbina: Life cycle analysis of organic photovoltaic technologies. Prog. Photovoltaics 18, 535–558 (2010).

    Google Scholar 

  23. 23.

    M. Held, N. Lam, M. Pietsch, P. Hindenberg, C. Romero-Nieto, and G. Hernandez-Sosa: Biodegradable elastomers for stretchable light-emitting electrochemical cells. Presented at the MRS Spring Meeting, Phoenix, AZ, 22–26 April 2019.

    Google Scholar 

  24. 24.

    A. Koh, R. Mrozek, and G. Slipher: The freeze/thaw properties of the conformable conductor eutectic gallium-indium-tin. Presented at the MRS Spring Meeting, Phoenix, AZ, 22–26 April 2019.

    Google Scholar 

  25. 25.

    R. Kramer-Bottiglio: From particles to parts—multi-phase metallic particle additives for sensing and tunable materials. Presented at the MRS Spring Meeting, Phoenix, AZ, 22–26 April 2019.

    Google Scholar 

  26. 26.

    Alfa Aesar: Gallium Indium Tin eutectic, 99.99% (metals basis) — GHS Gefahren- und Sicherheitshinweise. (accessed June 19, 2019).

    Google Scholar 

  27. 27.

    C. Kallmayer, F. Schaller, T. Löher, J. Haberland, F. Kayatz, and A. Schult: Optimized thermoforming process for conformable electronics. In Proc. of 13th International Congress Molded Interconnect Devices (MID), Würzburg, Germany, 25–26 September 2018.

    Google Scholar 

  28. 28.

    F. Greco: Tattoo paper as a platform for bio-friendly and skin-contact conformable electronics. Presented at the MRS Spring Meeting, Phoenix, AZ, 22–26 April 2019.

    Google Scholar 

  29. 29.

    G. Casula, S. Lai, A. Bonfiglio, and P. Cosseddu: Printed low voltage organic field-effect transistors and circuits on paper substrate. Presented at the MRS Spring Meeting, Phoenix, AZ, 22–26 April 2019.

    Google Scholar 

  30. 30.

    X. Zang, C. Shen, Y. Chu, B. Li, M. Wei, J. Zhong, M. Sanghadasa, and L. Lin: Laser-induced molybdenum carbide–graphene composites for 3D foldable paper electronics. Adv. Mater. 30, 1–8 (2018).

    Google Scholar 

  31. 31.

    Z. Zou, C. Zhu, Y. Li, X. Lei, W. Zhang, and J. Xiao: Rehealable, fully recyclable, and malleable electronic skin enabled by dynamic covalent thermoset nanocomposite. Sci. Adv. 4, 2 (2018).

    Google Scholar 

  32. 32.

    I. Gort and A. Gerrits: Designing with Recycled Plastics–Guidelines; Amsterdam, 2015.

    Google Scholar 

  33. 33.

    K. Pienkowska: Safety and toxicity aspects of polysiloxanes (silicones) applications. In Concise Encyclopedia of High Performance Silicones, 1st ed., edited by A. Tiwari, and M. D. Soucek (WILEY-Scrivener Publisher, Hoboken, NJ, USA, 2014), pp. 243–251.

    Google Scholar 

  34. 34.

    TOXNET–Toxicology Data Network: Polydimethylsiloxanes. (accessed September 23, 2019).

    Google Scholar 

  35. 35.

    R.R. Richardson Jr., J.A. Miller, and W.M. Reichert: Polyimides as biomaterials: preliminary biocompatibility testing. Biomaterials 14, 627–35 (1993).

    CAS  Google Scholar 

  36. 36.

    U.S. National Library of Medicine: Haz-Map. (accessed September 23, 2019).

    Google Scholar 

  37. 37.

    M. Asplund, E. Thaning, J. Lundberg, A.C. Sandberg-Nordqvist, B. Kostyszyn, O. Inganä, and H. von Holst: Toxicity evaluation of PEDOT/biomolecular composites intended for neural communication electrodes. Biomed. Mater. 4, 8–11 (2009).

    Google Scholar 

  38. 38.

    R.M. Miriani, M.R. Abidian, and D.R. Kipke: Cytotoxic analysis of the conducting polymer PEDOT using myocytes. In Conf. Proc. IEEE Eng. Med. Biol. Soc., 2008, pp. 1841–1844.

    Google Scholar 

  39. 39.

    EUR-Lex: Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment. Official J. Eur. Union 174, 88–110 (2011).

    Google Scholar 

  40. 40.

    Öko-Institut, Fraunhofer IZM: Study to support the review of the list of restricted substances and to assess a new exemption request under RoHS 2. (accessed May 9, 2019).

    Google Scholar 

  41. 41.

    ECHA: European Chemicals Agency: Candidate List of Substances of Very High Concern for Authorisation. (accessed May 9, 2019).

    Google Scholar 

  42. 42.

    L.V. Kayser: Molecular engineering of stretchable organic electronics using block copolymers. Presented at the MRS Spring Meeting, Phoenix, AZ, 22–26 April 2019.

    Google Scholar 

  43. 43.

    F. Elhi, P. Rinne, K. Karu, T. Tamm, U. Johanson, V. Ivanistsev, A. Aabloo, and K. Pohako-Esko: Biofriendly ionic electromechanically active polymer actuators. Presented at the MRS Spring Meeting, Phoenix, AZ, 22–26 April 2019.

    Google Scholar 

  44. 44.

    Y. Zhao, Y. Zhang, Y. Xu, H. Sun, and H. Peng: Flexible and multi-functional energy storage devices with high safety. Presented at the MRS Spring Meeting, Phoenix, AZ, 22–26 April 2019.

    Google Scholar 

  45. 45.

    J. Cao, Y. Zhao, Y. Xu, Y. Zhang, B. Zhang, and H. Peng: Sticky-note supercapacitors. J. Mater. Chem. A 8, 3356 (2018).

    Google Scholar 

  46. 46.

    T. Chen, R. Hao, H.S. Peng, and L.M. Dai: High-performance, stretchable, wire-shaped supercapacitors. Angew. Chem. Int. Ed. 54, 618–622 (2015).

    CAS  Google Scholar 

  47. 47.

    Z.B. Yang, J. Deng, X.L. Chen, J. Ren, and H.S. Peng: A highly stretchable, fiber-shaped supercapacitor. Angew. Chem. Int. Ed. 52, 13453–13457 (2013).

    CAS  Google Scholar 

  48. 48.

    X.L. Dong, Z.Y. Guo, Y.F. Song, M.Y. Hou, J.Q. Wang, Y.G. Wang, and Y.Y. Xia: Flexible and wire-shaped micro-supercapacitor based on Ni(OH)2-nanowire and ordered mesoporous carbon electrodes. Adv. Funct. Mater. 24, 3405–3412 (2014).

    CAS  Google Scholar 

  49. 49.

    M.S. Zhu, Y. Huang, Q.H. Deng, J. Zhou, Z.X. Pei, Q. Xue, Y. Huang, Z.F. Wang, H.F. Li, Q.H. Huang, and C. Zhi: Highly flexible, freestanding supercapacitor electrode with enhanced performance obtained by hybridizing polypyrrole chains with mxene. Adv. Energy Mater. 6, 1600969 (2016).

    Google Scholar 

  50. 50.

    Y.H. Kwon, S.-W. Woo, H.-R. Jung, H.K. Yu, K. Kim, B.H. Oh, S. Ahn, S.-Y. Lee, S.-W. Song, J. Cho, H.-C. Shin, and J.Y. Kim: Cable-type flexible lithium ion battery based on hollow multi-helix electrodes. Adv. Mater. 24, 5192–5197 (2012).

    CAS  Google Scholar 

  51. 51.

    N. Li, Z.P. Chen, W.C. Ren, F. Li, and H.-M. Cheng: Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates. Proc. Natl. Acad. Sci. USA 109, 17360–17365 (2012).

    CAS  Google Scholar 

  52. 52.

    G.M. Zhou, L. Li, D.-W. Wang, X.-Y. Shan, S.F. Pei, F. Li, and H.-M. Cheng: A flexible sulfur-graphene-polypropylene separator integrated electrode for advanced Li-S batteries. Adv. Mater. 27, 641–647 (2015).

    CAS  Google Scholar 

  53. 53.

    F.X. Wu, E. Zhao, D. Gordon, Y.R. Xiao, C.C. Hu, and G. Yushin: Infiltrated porous polymer sheets as free-standing flexible lithium-sulfur battery electrodes. Adv. Mater. 28, 6365 (2016).

    CAS  Google Scholar 

  54. 54.

    W.J. Song and S. Park: All stretchable aqueous rechargeable batteries for wearable devices. Presented at the MRS Spring Meeting, Phoenix, AZ, 22–26 April 2019.

    Google Scholar 

  55. 55.

    R. Gupta and H. Xie: Nanoparticles in daily life: applications, toxicity and regulations. J. Environ. Pathol. Toxicol. Oncol. 37, 209–230 (2018).

    Google Scholar 

  56. 56.

    S. Glisovic, D. Pesic, E. Stojiljkovic, T. Golubovic, D. Krstic, M. Prascevic, and Z. Jankovic: Emerging technologies and safety concerns: a condensed review of environmental life cycle risks in the nano-world. Int. J. Environ. Sci. Technol. 14, 2301–2320 (2017).

    Google Scholar 

  57. 57.

    K. Schischke, M. Stutz, J.-P. Ruelle, H. Griese, and H. Reichl: Life cycle inventory analysis and identification of environmentally significant aspects in semiconductor manufacturing. In Proc. IEEE Int. Symp. on Electronics and the Environment, Denver, CO, May 2001; 145–150.

    Google Scholar 

  58. 58.

    K. Schischke, D. Manessis, J. Pawlikowski, T. Kupka, T. Krivec, R. Pamminger, S. Glaser, G. Podhradsky, N.F. Nissen, M. Schneider-Ramelow, and K.-D. Lang: Embedding as a key board-level technology for modularization and circular design of smart mobile products: Environmental assessment. In Proc. of EMPC 2019–22nd European Microelectronics Packaging Conference, Pisa, Italy, 16–19 September 2019.

  59. 59.

    S. Wang, J. Xu, W. Wang, G.-J.N. Wang, R. Rastak, F. Molina-Lopez, J.W. Chung, S. Niu, V.R. Feiq, J. Lopez, T. Lei, S.K. Kwon, Y. Kim, A.M. Foudeh, A. Ejrlich, A. Gasperini, Y. Yun, B. Murmann, J.B. Tok, and Z. Bao: Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555, 83–88 (2018).

    CAS  Google Scholar 

  60. 60.

    S. Gupta, W. Taube Navaraj, L. Lorenzelli, and R. Dahiya: Ultra-thin chips for high-performance flexible electronics. npj Flexible Electron. 2, 2 (2018).

    Google Scholar 

  61. 61.

    T. Suwald: Thin chips for document security. In Ultra-thin Chip Technology and Applications, edited by J. Burghartz(Springer, New York, Dordrecht, Heidelberg, London, 2011), pp. 399.

    Google Scholar 

  62. 62.

    K. Schischke, O. Deubzer, H. Griese, and I. Stobbe: LCA for Environmental management and eco-design in the electronics industry - state of the art and screening approaches. In LCA/LCM 2002–Life Cycle Assessment and Life Cycle Management E-conference, 20–25 May 2002.

    Google Scholar 

  63. 63.

    N. Krishnan, S. Boyd, A. Somani, S. Raoux, D. Clark, and D. Dornfeld: A hybrid life cycle inventory of nano-scale semiconductor manufacturing. Environ. Sci. Technol. 42, 3069–3075 (2008).

    CAS  Google Scholar 

  64. 64.

    R. Søndergaard, M. Hösel, D. Angmo, T.T. Larsen-Olsen, and F.C. Krebs: Roll-to-roll fabrication of polymer solar cells. Mater. Today 15, 36–49 (2012).

    Google Scholar 

  65. 65.

    mermaids. Ocean Clean Wash: Handbook for Zero Microplastics from Textiles and Laundry, 2018. (accessed June 24, 2019).

    Google Scholar 

  66. 66.

    L. Mertz: Are wearables safe?: We carry our smart devices with us everywhere - Even to bed — But have we been sleeping with the enemy, or are cautionary tales overinflated? IEEE Pulse 7, 39–43 (2016).

    Google Scholar 

  67. 67.

    T. Makov, T. Fishman, M.R. Chertow, and V. Blass: What affects the secondhand value of smartphones: evidence from eBay. J. Ind. Ecol. 23, 549–559 (2019).

    Google Scholar 

  68. 68.

    N. Tröger, H. Wieser, and R. Hübner: Smartphones Are Replaced More Frequently than t-Shirts–Patterns of Consumer Use and Reasons for Replacing Durable Goods (Chamber of Labour in Vienna, Vienna, Austria, 2017).

    Google Scholar 

  69. 69.

    newzoo: Celebrating 10 Years of iPhones: 63% of All iPhones Ever Sold Are Still in Use–728 Million, by Bernd van der Wielen, June 29, 2017. (accessed January 28, 2019).

    Google Scholar 

  70. 70.

    H. Wieser: Ever-faster, ever-shorter? Replacement cycles of durable goods in historical perspective. In Proc. of PLATE–Product Lifetimes And The Environment Conference, 8–10 November 2017; Delft: The Netherlands.

    Google Scholar 

  71. 71.

    wrap: Valuing Our Clothes: the cost of UK fashion, July 2017. (accessed May 9, 2019).

    Google Scholar 

  72. 72.

    M. Xu, J. Qi, F. Li, and Y. Zhang: Highly stretchable strain sensors with reduced graphene oxide sensing liquids for wearable electronics. Nanoscale 10, 5264–5271 (2018).

    CAS  Google Scholar 

  73. 73.

    X.X. Yang, Y.F. Huang, Z.H. Dai, J. Barber, P.L. Wang, and N.S. Lu: “Cut-and-paste” method for the rapid prototyping of soft electronics. Sci. China Technol. Sci. 62, 7–8 (2019).

    CAS  Google Scholar 

  74. 74.

    N.S. Lu: “Cut-solder-paste” process for the rapid prototyping of wireless and reconfigurable electronic tattoos. Presented at the MRS Spring Meeting, Phoenix, AZ, 22–26 April 2019.

    Google Scholar 

  75. 75.

    A.R. Köhler: End-of-life implications of electronic textiles — assessment of a converging technology. Master thesis, Lund, Sweden, 2008.

    Google Scholar 

  76. 76.

    M.A. Reuter and A. van Schaik: Resource efficient metal and material recycling. In REWAS 2013: Enabling Materials Resource Sustainability, edited by A. Kvithyld, C. Meskers, R. Kirchain, G. Krumdick, B. Mishra, M. Reuter, C. Wang, M. Schlesinger, G. Gaustad, D. Lados, and J. Spangenberger (Wiley, Hoboken, New Jersey, 2013) pp. 332–340.

    Google Scholar 

  77. 77.

    Y.J. Song, J.-W. Kim, H.-E. Cho, and S.-M. Lee: Addressable organic light-emitting diode fabrics toward fully-functional wearable displays. Presented at the MRS Spring Meeting, Phoenix, AZ, 22–26 April 2019.

    Google Scholar 

  78. 78.

    R. Aschenbrenner and C. Kallmayer: Materials and concepts for textile sensor systems. In 9th International Conference on Materials for Advanced Technologies (ICMAT 2017), 18–23 June 2017, Singapore.

    Google Scholar 

  79. 79.

    P. Foerster, E. Simon, F. Hänsch, C. Kallmayer, M. Schneider-Ramelow, and K.-D. Lang: Textile Leiterplatte - Large-area, wirtschaftlich und umweltschonend. In Proc. of Elektronische Baugruppen und Leiterplatten EBL; Fellbach, 2014; pp. 245–253.

  80. 80.

    Y.H. Jung, T.-H. Chang, H. Zhang, C. Yao, Q. Zheng, V.W. Yang, H. Mi, M. Kim, S.J. Cho, D.-W. Park, H. Jiang, J. Lee, Y. Qiu, W. Zhou, Z. Cai, S. Gong, and Z. Ma: High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat. Commun. 6, 2–9 (2015).

    Google Scholar 

  81. 81.

    M. Kaltenbrunner: Soft electronic and robotic systems from resilient yet biocompatible and degradable materials. Presented at the MRS Spring Meeting, Phoenix, AZ, 22–26 April 2019.

    Google Scholar 

  82. 82.

    D.J. Saldanha, B. Janfeshan, Z. Abdali, and N.-M. Dorval Courchesne: Integration of genetically engineered protein fibers with textile scaffolds for wearable sensing applications. Presented at the MRS Spring Meeting, Phoenix, AZ, 22–26 April 2019.

    Google Scholar 

  83. 83.

    M. Pietsch, M. Held, L. Pocarelli, A. Sanchez-Sanchez, D. Mecerreyes, and G. Hernandez-Sosa: Digitally inkjet-printed electro(fluoro)chromic devices consisting of biodegradable and biocompatible materials. Presented at the MRS Spring Meeting, Phoenix, AZ, 22–26 April 2019.

    Google Scholar 

  84. 84.

    T. Kaneko and M. Okajima: Biopolyimides for transparent insulators. Presented at the MRS Spring Meeting, Phoenix, AZ, 22–26 April 2019.

    Google Scholar 

  85. 85.

    M. Mohammadifar, I. Yazgan, J. Zhang, V. Kariuki, O.A. Sadik, and S. Cho: Green biobatteries: hybrid paper–polymer microbial fuel cells. Adv. Sustain. Syst. 2, 7 (2018).

    Google Scholar 

  86. 86.

    NSAI: Plastics - Evaluation of compostability - Test scheme and specifications. Deutsches Institut für Normung / European Norm: DIN EN 14995:2007-03.

  87. 87.

    A.M. Fitzgerald: The Internet of Disposable Things Will Be Made of Paper and Plastic Sensors — For disposable sensors, silicon will never be the right fit—but cheaper tech is nearly here. IEEE Spectrum, 2018. (accessed June 24, 2019).

    Google Scholar 

  88. 88.

    D. She, M. Tsang, and M. Allen: Biodegradable batteries with immobilized electrolyte for transient MEMS. Biomed. Microdevices 21, 2–3 (2019).

    Google Scholar 

  89. 89.

    EUR-Lex: Directive 2012/19/EU of the European Parliament and of the Council of 4 July 2012 on waste electrical and electronic equipment (WEEE). Official J. Eur. Union 197, 38–71 (2012).

    Google Scholar 

  90. 90.

    EUR-Lex: Directive 2009/125/EC of the European Parliament and of the Council of 21 October 2009 establishing a framework for the setting of ecodesign requirements for energy-related products. Official J. Eur. Union 285, 10–35 (2009).

    Google Scholar 

  91. 91.

    European Commission: Ecodesign Working Plan 2016–2019, COM(2016) 773 final, Brussels, 2016.

Download references


This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 820331.

Author information



Corresponding author

Correspondence to Karsten Schischke.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schischke, K., Nissen, N.F. & Schneider-Ramelow, M. Flexible, stretchable, conformal electronics, and smart textiles: environmental life cycle considerations for emerging applications. MRS Communications 10, 69–82 (2020).

Download citation