Skip to main content

Mechanical and failure behaviors of lattice-plate hybrid structures


The authors design six alumina hybrid structures consisting of stretching-dominated plates and different space-filling lattices comprised of hollow tubes and perform finite element simulations to study mechanical and failure behaviors of such hybrid structures. The authors investigate the effects of three geometrical parameters on the stiffness and failure of these hybrid structures and further compare their advantages and disadvantages. The authors find that the failure modes of these hybrid structures can be tuned by altering cell unit type and geometrical parameters. Among these hybrid structures, the ones with effective support from the lattice unit cells in the stretching direction exhibit better specific stiffness and strength. By varying the lattice and plate thickness, the authors find that the relations between stiffness/failure strength and density follow a power law. When intrinsic material failure occurs, the power law exponent is 1; when buckling failure arises, the power law exponent is 3. However, by varying tube thickness, their relations follow unusual power relations with the exponent changing from nearly 0 to nearly infinity. In addition, the hybrid structures also exhibit defect insensitivity. This study shows that such hybrid structures are able to greatly expand the design space of architectured cellular materials for engineering applications.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10


  1. 1.

    T.A. Schaedler, A.J. Jacobsen, and W.B. Carter: Toward lighter, stiffer materials. Science 341, 1181–1182 (2013).

    CAS  Article  Google Scholar 

  2. 2

    L.J. Gibson and M.F. Ashby: Cellular Solids: Structure and Properties (Cambridge University Press, Cambridge, UK, 1997).

    Book  Google Scholar 

  3. 3.

    A.G. Evans, J.W. Hutchinson, and M.F. Ashby: Multifunctionality of cellular metal systems. Prog. Mater. Sci. 43, 171–221 (1999).

    Article  Google Scholar 

  4. 4.

    H.B.G. Wadley, N.A. Fleck, and A.G. Evans: Fabrication and structural performance of periodic cellular metal sandwich structures. Compos. Sci. Technol. 63, 2331–2343 (2003).

    CAS  Article  Google Scholar 

  5. 5.

    V.S. Deshpande, N.A. Fleck, and M.F. Ashby: Effective properties of the octet truss lattice material. J. Mech. Phys. Solids 49, 1747–1769 (2001).

    CAS  Article  Google Scholar 

  6. 6.

    H.N.G. Wadley: Multifunctional periodic cellular metals. Philos. Trans. R. Soc. A 364, 31–68 (2006).

    CAS  Article  Google Scholar 

  7. 7.

    V.S. Deshpande, M.F. Ashby, and N.A. Fleck: Foam topology: bending versus stretching dominated architectures. Acta Mater. 49, 1035–1040 (2001).

    CAS  Article  Google Scholar 

  8. 8.

    T.A. Schaedler, A.J. Jacobsen, A. Torrents, A.E. Sorensen, J. Lian, J.R. Greer, L. Valdevit, and W.B. Carter: Ultralight metallic microlattices. Science 334, 962–965 (2011).

    CAS  Article  Google Scholar 

  9. 9.

    J. Bauer, S. Hengsbach, I. Tesari, R. Schwaiger, and O. Kraft: High-strength cellular ceramic composites with 3D microarchitecture. Proc. Natl. Acad. Sci. USA 111, 2453–2458 (2014).

    CAS  Article  Google Scholar 

  10. 10.

    Z.C. Eckel, C. Zhou, J.H. Martin, A.J. Jacobsen, W.B. Carter, and T.A. Schaedler: Additive manufacturing of polymer derived ceramics. Science 351, 58–62 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    T. George, V.S. Deshpande, and H.N.G. Wadley: Mechanical response of carbon fiber composite sandwich panels with pyramidal truss cores. Composites Part A 47, 31–40 (2013).

    CAS  Article  Google Scholar 

  12. 12.

    K.C. Cheung, and N. Gershenfeld: Reversibly assembled cellular composite materials. Science 341, 1219–2121 (2013).

    CAS  Article  Google Scholar 

  13. 13.

    X. Zheng, H. Lee, T.H. Weisgraber, M. Shusteff, J. DeOtte, E.B. Duoss, J.D. Kuntz, M.M. Biener, Q. Ge, J.A. Jackson, S.O. Kucheyev, N.X. Fang, and C.M. Spadaccini: Ultralight, ultrastiff mechanical metamaterials. Science 344, 1373–1377 (2014).

    CAS  Article  Google Scholar 

  14. 14.

    R.B. Dinwiddie, R.R. Dehoff, P.D. Lloyd, L.E. Lowe, and J.B. Ulrich: Thermographic in-situ process monitoring of the electron-beam melting technology used in additive manufacturing. Proc. SPIE 8705, 87050K (2013).

    Article  Google Scholar 

  15. 15.

    N. Wicks, and J.W. Hutchinson: Optimal truss plates. Int. J. Solids Struct. 38, 5165–5183 (2001).

    Article  Google Scholar 

  16. 16.

    L. Valdevit, J.W. Hutchinson, and A.G. Evans: Structurally optimized sandwich panels with prismatic cores. Int. J. Solids Struct. 41, 5105–5124 (2004).

    Article  Google Scholar 

  17. 17.

    L. Valdevit, A. Pantano, H.A. Stone, and A.G. Evans: Optimal active cooling performance of metallic sandwich panels with prismatic cores. Int. J. Heat Mass Transf. 49, 3819–3830 (2006).

    Article  Google Scholar 

  18. 18.

    M.P. Bendsoe, and O. Sigmund: Topology Optimization (Springer, Berlin, 2002).

    Google Scholar 

  19. 19.

    P.W. Christensen, and A. Klabering: An Introduction to Structural Optimization (Springer, Berlin, 2008).

    Google Scholar 

  20. 20.

    Altair Engineering Inc. Altair OptiStruct. (2013).

  21. 21.

    Autodesk Inc. Autodesk Within. (2015).

  22. 22.

    Z.G. Liu, P. Liu, W. Huang, W.H. Wong, A.L. Commillus, and Y.W. Zhang: A nanolattice-plate hybrid structure to achieve a nearly linear relation between stiffness/strength and density. Mater. Design 160, 496–502 (2018).

    Article  Google Scholar 

  23. 23.

    N.A. Fleck, V.S. Deshpande, and M.F. Ashby: Micro-architectured materials: past, present and future. Proc. R. Soc. A 466, 2495–2516 (2010).

    CAS  Article  Google Scholar 

  24. 24.

    O. Rehme: Cellular design for laser freeform fabrication, Ph.D. Thesis, Hamburg-Harburg, Technical University, 2009.

    Google Scholar 

  25. 25.

    E.W. Andrews, G. Gioux, P.R. Onck, and L.J. Gibson: Size effects in ductile cellular solids. Part II: experimental results. Int. J. Mech. Sci. 43, 701–713 (2001).

    Article  Google Scholar 

  26. 26.

    O. Kesler and L.J. Gibson: Size effects in metallic foam core sandwich beams. Mater. Sci. Eng., A 326, 228–234 (2002).

    Article  Google Scholar 

  27. 27.

    G. Dai and W. Zhang: Size effects of effective Young’s modulus for periodic cellular materials. Sci. China, Ser. G: Phys., Mech. Astron. 52, 1262–1270 (2009).

    Article  Google Scholar 

  28. 28.

    P.R. Onck, E.W. Andrews, and L.J. Gibson: Size effects in ductile cellular solids. Part I: modeling. Int. J. Mech. Sci. 43, 681–699 (2001).

    Article  Google Scholar 

  29. 29.

    C. Tekoglu and P.R. Onck: Size effects in the mechanical behavior of cellular materials. J. Mater. Sci. 40, 5911–5917 (2005).

    CAS  Article  Google Scholar 

  30. 30.

    ABAQUS Version 6.14. User’s Manual Version 6.14 (Providence, RI, USA, 2014).

    Google Scholar 

  31. 31.

    L.J. Gibson: The mechanical behavior of cancellous bone. J. Biomech. 18, 317–328 (1985).

    CAS  Article  Google Scholar 

  32. 32.

    L.J. Gibson and M.F. Ashby: The mechanics of two-dimensional cellular materials. Proc. R. Soc. A 382, 25–42 (1982).

    Google Scholar 

  33. 33.

    L.J. Gibson and M.F. Ashby: The mechanics of three-dimensional cellular materials. Proc. R. Soc. A 382, 43–59 (1982).

    CAS  Google Scholar 

  34. 34.

    L.J. Gibson, M.F. Ashby, and K.E. Easterling: Structure and mechanics of the iris leaf. J. Mater. Sci. 23, 3041–3048 (1988).

    Article  Google Scholar 

  35. 35.

    L.J. Gibson, M.F. Ashby, G.N. Karam, U. Wegst, and H.R. Shercliff: The mechanical properties of natural materials II: microstructures for mechanical efficiency. Proc. R. Soc. A 450, 141–162 (1995).

    Google Scholar 

  36. 36.

    L.J. Gibson: Biomechanics of cellular solids. J. Biomech. 38, 377–399 (2005).

    Article  Google Scholar 

  37. 37.

    L.C. Montemayor, W.H. Wong, Y.W. Zhang, and J.R. Greer: Insensitivity to flaws leads to damage tolerance in brittle architected meta-materials. Sci. Rep. 6, 20570 (2016).

    CAS  Article  Google Scholar 

  38. 38.

    A.J. Mateos, W. Huang, Y.W. Zhang, and J.R. Greer: Discrete-continuum duality of architected materials: failure, flaws, and fracture. Adv. Funct. Mater. 29, 1806772 (2019).

    Google Scholar 

  39. 39.

    A.M. Abazari, S.M. Safavi, G. Rezazadeh, and L.G. Villanueva: Modelling the size effects on the mechanical properties of micro/nano structures. Sensors 15, 28543–28562 (2015).

    Article  Google Scholar 

  40. 40.

    J.R. Greer, and J.T.M. Hosson: Plasticity in small-sized metallic systems: intrinsic versus extrinsic size effect. Prog. Mater. Sci. 56, 654–724 (2011).

    CAS  Article  Google Scholar 

Download references


The support of this work by the Institute of High Performance Computing, A*STAR and use of computing resources at the A*STAR Computational Resource Centre and National Supercomputer Centre, Singapore, are gratefully acknowledged.

Author information



Corresponding author

Correspondence to Ping Liu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Liu, P., Huang, W. et al. Mechanical and failure behaviors of lattice-plate hybrid structures. MRS Communications 10, 42–54 (2020).

Download citation