Skip to main content

Cadmium sulfide/lead sulfide co-sensitized TiO2 enhances photoelectrochemical performance and corrosion resistance of 304 stainless steel

Abstract

This paper proposes to improve the corrosion resistance of stainless steel using the photocathodic protection (PCP) method with CdS/PbS/ titanium dioxide (TiO2) as the photoanode material. Cadmium sulfide (CdS)/lead sulfide (PbS) quantum dot (QD) heterostructure layered on TiO2 enhanced the photoelectrochemical performance and improved the PCP of 304 stainless steel. The photoanode film can protect 304 stainless steel for a period of upto 3 months against corrosion. This work demonstrates that CdS/PbS/TiO2 tandem heterostructure is a promising durable and stable photoanode, which can protect stainless steel in both dark and illuminated conditions.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. 1.

    W.-X. Sun, W. Na, H.-Z. Cui, L. Yuan, X. Wang, T. Jian, L. Jian, and W. Jing: 3D ZnIn2S4 nanosheet/TiO2 nanowire arrays and their efficient pho-tocathodic protection for 304 stainless steel. Appl. Surf. Sci. 434, 25 (2018).

    Google Scholar 

  2. 2.

    H. Li, X.-T. Wang, Q.-Y. Wei, and B. Hou: Photocathodic protection of 304 stainless steel by Bi2S3/TiO2 nanotube films under visible light. Nanoscale Res. Lett. 12, 80 (2017).

    Article  Google Scholar 

  3. 3.

    M.-J. Zhou, Z.-O. Zeng, and L. Zhong: Photogenerated cathode protection properties of nano-sized TiO/WO coating. Corros. Sci. 51, 1386 (2009).

    CAS  Article  Google Scholar 

  4. 4.

    T. Zhang, Y. Liu, J. Liang, and D. Wang: Enhancement of photoelectro-chemical and photocathodic protection properties of TiO2 nanotube arrays by simple surface UV treatment. Appl. Surf. Sci. 394, 440 (2017).

    CAS  Article  Google Scholar 

  5. 5.

    J. Zhang, J. Hu, Y.-F. Zhu, Q. Liu, H. Zhang, R.-G. Du, and C.-J. Lin: Fabrication of CdTe/ZnS core/shell quantum dots sensitized TiO2 nano-tube films for photocathodic protection of stainless steel. Corros. Sci. 99, 118 (2015).

    CAS  Article  Google Scholar 

  6. 6.

    Y.-F. Zhu, L. Xu, J. Hu, J. Zhang, R.-G. Du, and C.-J. Lin: Fabrication of heterostructured SrTiO3/TiO2 nanotube array films and their use in photo-cathodic protection of stainless steel. Electrochim. Acta 121, 361 (2014).

    CAS  Article  Google Scholar 

  7. 7.

    X.-H. Liu, P.-M. Hou, X. Zhao, X.-M. Ma, and B.-R. Hou: The polyaniline-modified TiO2 composites in water-based epoxy coating for corrosion protection of Q235 steel. J. Coat. Technol. Res. 16, 71 (2019).

    CAS  Article  Google Scholar 

  8. 8.

    X.-t Wang, Q.-y. Wei, L. Zhang, H.-f Sun, H. Li, and Q.-X. Zhang: CdTe/ TiO2 nanocomposite material for photogenerated cathodic protection of 304 stainless steel. Mater. Sci. Eng. B 208, 22 (2016).

    CAS  Article  Google Scholar 

  9. 9.

    H. Li, X.-T. Wang, L. Zhang, and B. Hou: Preparation and photocathodic protection performance of CdSe/reduced graphene oxide/TiO2 composite. Corros. Sci. 94, 342 (2015).

    CAS  Article  Google Scholar 

  10. 10.

    A. Hakimizad, K. Raeissi, M.A. Golozar, X. Lu, C. Blawert, and M.L. Zheludkevich: Influence of cathodic duty cycle on the properties of tungsten containing Al2O3/TiO2 PEO nano-composite coatings. Surf. Coat. Technol. 340, 1609 (2018).

    Article  Google Scholar 

  11. 11.

    X.-B. Ning, S.-S. Ge, X.-T. Wang, H. Li, X.-R. Li, X.-Q. Liu, and Y.-L. Huang: Preparation and photocathodic protection property of Ag2S-TiO2 composites. J. Alloy. Compd. 719, 2325 (2017).

    Article  Google Scholar 

  12. 12.

    Q.-L. Pan, J.-G. Zhao, B.-Y. Xing, and S. Jiang: A hierarchical porous architecture of silicon@TiO2@carbon composite novel anode materials for high performance Li-ion batteries. New J. Chem. 38, 43 (2019).

    Google Scholar 

  13. 13.

    S. Gurusamy, M.R. Kulanthaisamy, D.G. Hari, T. Ananthi, and M. Boobalan: Environmental friendly synthesis of TiO2-ZnO nanocomposite catalyst and silver nanomaterilas for the enhanced production of biodiesel from Ulva lactuca seaweed and potential antimicrobial properties against the microbial pathogens. J. Photochem. Photobiol. B 193, 118 (2019).

    CAS  Article  Google Scholar 

  14. 14.

    D.-W. Cao, N. Nasori, Z.-J. Wang, L. Wen, R. Xu, Y. Mi, and Y. Lei: Facile surface treatment on Cu2O photocathodes for enhancing the photoelec-trochemical response. Appl. Catal. B 198, 398 (2016).

    CAS  Article  Google Scholar 

  15. 15.

    C.-B. Liu, C.-H. Cao, X.-B. Luo, and S. Luo: Ag-bridged Ag2O nanowire network/TiO2 nanotube array p-n heterojunction as a highly efficient and stable visible light photocatalyst. J. Hazard. Mater. 285, 319 (2015).

    CAS  Article  Google Scholar 

  16. 16.

    Z.-Q. Lin, Y.-K. Lai, and R.-G. Hu: A highly efficient ZnS/CdS@TiO2 photo-electrode for photogenerated cathodic protection of metals. Electrochim. Acta 55, 8717 (2010).

    CAS  Article  Google Scholar 

  17. 17.

    Y.-Y. Bu and Z.-Y. Chen: Effect of oxygen-doped C3N4 on the separation capability of the photoinduced electron-hole pairs generated by O–C3N4@TiO2 with quasi-shell-core nanostructure. Electrochim. Acta 144, 42 (2014).

    CAS  Article  Google Scholar 

  18. 18.

    T.-Y. Liu, B. Liu, L.-F. Yang, X. Ma, H. Li, S. Yin, T. Sato, T. Sekino, and Y. Wang: RGO/Ag2S/TiO2 ternary heterojunctions with highly enhanced UV-NIR photocatalytic activity and stability. Appl. Catal. B 204, 593 (2017).

    CAS  Article  Google Scholar 

  19. 19.

    J. Li, C.-J. Lin, J.-T. Li, and Z.-Q. Lin: A photoelectrochemical study of CdS modified TiO2 nanotube arrays as photoanodes for cathodic protection of stainless steel. Thin Solid Film 519, 5494 (2011).

    CAS  Article  Google Scholar 

  20. 20.

    M. Zhang, Y.-Y. Xu, Z.-Z. Gong, J. Tao, Z. Sun, J. Lv, X. Chen, X. Jiang, G. He, and P. Wang: Enhanced charge collection and photocatalysis performance of CdS and PbS nanoclusters co-sensitized TiO2 porous film. J. Alloys Compd 649, 190 (2015).

    CAS  Article  Google Scholar 

  21. 21.

    L. Etgar, J. Park, C. Barolo, M.K. Nazeeruddin, G. Viscardi, and M. Graetzel: Design and development of novel linker for PbS quantum dots/TiO2 mesoscopic solar cell. ACS Appl. Mater. Interfaces 3, 3264 (2011).

    CAS  Article  Google Scholar 

  22. 22.

    T. Tatsuma, S. Takeda, S. Saitoh, Y. Ohko, and A. Fujishima: Bactericidal effect of energy storage TiO2–WO3 photocatalysis in dark. Electrochem. Commun. 5, 793 (2003).

    CAS  Article  Google Scholar 

  23. 23.

    Y.-T. Li, W. Lin, X.-Y. Chen, R. Zhang, S. Xing, Y. Chen, J. Jiao, and L. Mei: Efficient PbS/CdS co-sensitized solar cells based on TiO2 nanorod arrays. Nanoscale Res. Lett. 8, 1 (2013).

    Article  Google Scholar 

  24. 24.

    D. Ding, Y. Chen, P. Lv, H. Yao, Y. Mu, S. Su, X. Zhang, L. Zhou, W.-Y. Fu, and H. Yang: Efficient improvement of photoelectrochemical activity for multiple semiconductor (CdS/PbS/ZnS) co-sensitized TiO2 photoelectro-des by hydrogen treatment. RSC Adv. 5, 6462 (2014).

    Article  Google Scholar 

  25. 25.

    E.-L. Dong, Z.-Y. Wu, W. Zhang, C. Lu, L. Zhang, Q. Wang, J. Ma, and J. Wang: Photoelectrochemical performance of PbS/CdS quantum dot cosensitized TiO2 photoelectrodes. 2015 Chinese Automation Congress (CAC), Wuhan, China, 27–29 November 2015 (IEEE, 2016), p. 1274.

    Google Scholar 

  26. 26.

    N. Guijarro, T. Lanavillarreal, T. Lutz, S.A. Haque, and R. Gómez: Sensitization of TiO2 with PbSe quantum dots by SILAR: how mercapto-phenol improves charge separation. J. Phys. Chem. Lett. 3, 3367 (2012).

    CAS  Article  Google Scholar 

  27. 27.

    R. Parize, T. Cossuet, E. Appert, O. Chaixpluchery, H. Roussel, L. Rapenne, and V. Consonni: Synthesis and properties of ZnO/TiO2/ Sb2S3 core-shell nanowire heterostructures using the SILAR technique. Cryst. Eng. Comm. 20, 1039 (2018).

    Article  Google Scholar 

  28. 28.

    A. Boonserm, C. Kruehong, V. Seithtanabutara, and A. Artnaseaw: Photoelectrochemical response and corrosion behavior of CdS/TiO2 nanocomposite films in an aerated 0.5 M NaCl solution. Appl. Surf. Sci. 419, 933 (2017).

    CAS  Article  Google Scholar 

  29. 29.

    L. Liu, H.-L. Hou, L. Wang, R. Xu, Y. Lei, S. Shen, D. Yang, and W. Yang: Transparent CdS@TiO2 nanotextile photoanode with boosted photoelec-trocatalytic efficiency and stability. Nanoscale 9, 1039 (2017).

    Google Scholar 

  30. 30.

    J.-H. Lee, H.-J. Ahn, J.-I. Youn, Y.-J. Kim, S.-J. Suh, and H.-J. Oh: Synthesis and characterization of ZnO/TiO2 photocatalyst decorated with PbS QDs for the degradation of aniline blue solution. Korean J. Met. Mater. 56, 900 (2018).

    CAS  Article  Google Scholar 

  31. 31.

    S. Das, C.-C. Wu, Z.-N. Song, Y.-C. Hou, R.r Koch, P. Somasundaran, and S. Priya: Bacteriorhodopsin enhances efficiency of perovskite solar cells. ACS Appl. Mater. Interfaces 11, 30728 (2019).

    CAS  Article  Google Scholar 

  32. 32.

    S. Das, T.C. Asmara, A. Patra, Z.-S. S, S. Bista, P. Somasundaran, A. Rusydi, B. Barbiellini, and R. Venkatesan: Optical properties of bacterio-rhodopsin–gold bionano interfaces. J. Phys. Chem. C 123, 26516 (2019).

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful for the financial supports from Beijing Natural Science Foundation (No. 3192013) and the Beijing Key Laboratory of Pipeline Critical Technology and Equipment for Deepwater Oil & Gas Development (BIPT 2018001).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yanhong Gu.

Supplementary materials

Supplementary materials

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2019.151.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zheng, X., Das, S., Gu, Y. et al. Cadmium sulfide/lead sulfide co-sensitized TiO2 enhances photoelectrochemical performance and corrosion resistance of 304 stainless steel. MRS Communications 9, 1361–1369 (2019). https://doi.org/10.1557/mrc.2019.151

Download citation