Skip to main content

Brush-structured sulfur-polyaniline-graphene composite as cathodes for lithium-sulfur batteries


In this work, the authors report a facile method for the preparation of brush-structured nanocomposites of sulfur–polyaniline–graphene oxide (S–PANI–G) that were used for cathode materials of lithium–sulfur batteries (LSBs). The morphology and structure of composite were studied by x-ray photoelectron microscopy, transmission electron microscopy, scanning electron microscopy, and x-ray diffraction analysis. The nanocomposites exhibited good electrochemical performance involving good rate performance, high capacity, and promising cycling stability. The good performance of S–PANI–G results from the synergistic effect of sulfur, polyaniline, and graphene oxide. The composite and method reported here pave the way for the design and synthesis of novel cathode materials for LSBs.

This is a preview of subscription content, access via your institution.

Figure 1.
Figure 2.
Figure 3.
Figure 4.


  1. 1.

    S. Evers and L.F. Nazar: New approaches for high energy density lithium–sulfur battery cathodes. Acc. Chem. Res. 46, 1135 (2012).

    Article  CAS  Google Scholar 

  2. 2.

    W. Chen, T. Lei, T. Qian, W. Lv, W. He, C. Wu, X. Liu, J. Liu, B. Chen, C. Yan, and J. Xiong: A new hydrophilic binder enabling strongly anchoring polysulfides for high-performance sulfur electrodes in lithium–sulfur battery. Adv. Energy Mater. 8, 1702889 (2018).

    Article  CAS  Google Scholar 

  3. 3.

    Q. Pang, C.Y. Kwok, D. Kundu, X. Liang, and L.F. Nazar: Lightweight metallic MgB2 mediates polysulfide redox and promises high-energy-density lithium–sulfur batteries. Joule 3, 136–148 (2019).

    CAS  Article  Google Scholar 

  4. 4.

    X. Ji, K.T. Lee, and L.F. Nazar: A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 8, 500 (2009).

    CAS  Article  Google Scholar 

  5. 5.

    B.L. Ellis, K.T. Lee, and L.F. Nazar: Positive electrode materials for Li-ion and Li-batteries. Chem. Mater. 22, 691 (2010).

    CAS  Article  Google Scholar 

  6. 6.

    M. Rana, M. Li, X. Huang, B. Luo, I. Gentlec, and R. Knibbe: Recent advances in separators to mitigate technical challenges associated with re-chargeable lithium–sulfur batteries. J. Mater. Chem. A 12, 6596–6615 (2019).

    Article  Google Scholar 

  7. 7.

    D. Gueon, J.T. Hwang, S.B. Yang, E. Cho, K. Sohn, D.K. Yang, and J.H. Moon: Spherical macroporous carbon nanotube particles with ultrahigh sulfur loading for lithium–sulfur battery cathodes. ACS Nano 12, 226–233 (2018).

    CAS  Article  Google Scholar 

  8. 8.

    H. Pan, K.S. Han, M.H. Engelhard, R. Cao, J. Chen, J.-G. Zhang, K.T. Mueller, Y. Shao, and J. Liu: Addressing passivation in lithium–sulfur battery under lean electrolyte condition. Adv. Funct. Mater. 28, 1707234 (2018).

    Article  CAS  Google Scholar 

  9. 9.

    J. Shim, K.A. Striebel, and E.J. Cairns: The lithium/sulfur rechargeable cell effects of electrode composition and solvent on cell performance. J. Electrochem. Soc. 149, A1321 (2002).

    Article  CAS  Google Scholar 

  10. 10.

    J.A. Dean: Lange’s Handbook of Chemistry, 3rd ed. (McGraw-Hill, New York, 1985).

    Google Scholar 

  11. 11.

    L. Xiao, Y. Cao, J. Xiao, B. Schwenzer, M.H. Engelhard, L.V. Saraf, Z. Nie, G.J. Exarhos, and J. Liu: A soft approach to encapsulate sulfur: polyani-line nanotubes for lithium–sulfur batteries with long cycle life. Adv. Mater. 24, 1176 (2012).

    CAS  Article  Google Scholar 

  12. 12.

    S.H. Chung and A. Manthiram: Rational design of statically and dynamically stable lithium–sulfur batteries with high sulfur loading and low electrolyte/sulfur ratio. Adv. Mater. 30, 1705951 (2018).

    Article  CAS  Google Scholar 

  13. 13.

    Q. Pang, A. Shyamsunder, B. Narayanan, C.Y. Kwok, L.A. Curtiss, and L.F. Nazar: Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li–S batteries. Nat. Energy 3, 783 (2018).

    CAS  Article  Google Scholar 

  14. 14.

    H. Wang, Y. Yang, Y. Liang, J.T. Robinson, Y. Li, A. Jackson, Y. Cui, and H. Dai: Graphene-wrapped sulfur particles as a rechargeable lithium–sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 11, 2644 (2011).

    CAS  Article  Google Scholar 

  15. 15.

    Y. Li, and N. Chopra: Progress in large-scale production of graphene. Part 2: vapor methods. JOM 67, 44 (2015).

    CAS  Article  Google Scholar 

  16. 16.

    Y. Li, and N. Chopra: Chemically modified and doped carbon nanotube-based nanocomposites with tunable thermal conductivity gradient. Carbon 77, 675 (2014).

    CAS  Article  Google Scholar 

  17. 17.

    F. Wu, J. Chen, R. Chen, S. Wu, L. Li, S. Chen, and T. Zhao: Sulfur/poly-thiophene with a core/shell structure: synthesis and electrochemical properties of the cathode for rechargeable lithium batteries. J. Phys. Chem. C 115, 6057 (2011).

    CAS  Article  Google Scholar 

  18. 18.

    X. Yu, J. Xie, Y. Li, H. Huang, C. Lai, and K. Wang: Stable-cycle and high-capacity conductive sulfur-containing cathode materials for rechargeable lithium batteries. J. Power Sources 146, 335 (2005).

    CAS  Article  Google Scholar 

  19. 19.

    T. Chen, L. Ma, B. Cheng, R. Chen, Y. Hu, G. Zhu, Y. Wang, J. Liang, Z. Tie, J. Liu, and Z. Jin: Metallic and polar Co9S8 inlaid carbon hollow nano-polyhedra as efficient polysulfide mediator for lithium–sulfur batteries. Nano Energy 38, 239–248 (2017).

    CAS  Article  Google Scholar 

  20. 20.

    W.G. Chong, J.-Q. Huang, Z.-L. Xu, X. Qin, X. Wang, and J.-K. Kim: Lithium–sulfur battery cable made from ultralight, flexible graphene/car-bon nanotube/sulfur composite fibers. Adv. Funct. Mater. 27, 1604815 (2017).

    Article  CAS  Google Scholar 

  21. 21.

    G. Zheng, Q. Zhang, J.J. Cha, Y. Yang, W. Li, Z.W. Seh, and Y. Cui: Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries. Nano Lett. 13, 1265 (2013).

    CAS  Article  Google Scholar 

  22. 22.

    Y. Li, W. Shi, and N. Chopra: Functionalization of multilayer carbon shell-encapsulated gold nanoparticles for surface-enhanced Raman scattering sensing and DNA immobilization. Carbon 100, 165 (2015).

    Article  CAS  Google Scholar 

  23. 23.

    K. Li, B. Wang, D. Su, J. Park, H. Ahn, and G. Wang: Enhance electrochemical performance of lithium–sulfur battery through a solution-based processing technique. J. Power Sources 202, 389 (2012).

    CAS  Article  Google Scholar 

  24. 24.

    Z. Chen, X.-L. Du, J.-B. He, F. Li, Y. Wang, Y.-L. Li, B. Li, and S. Xin: Porous coconut shell carbon offering high retention and deep lithiation of sulfur for lithium–sulfur batteries. ACS Appl. Mater. Interfaces 9, 3385–33862 (2017).

    Google Scholar 

  25. 25.

    C. Zhang, H.B. Wu, C. Yuan, Z. Guo, and X.W. Lou: Confining sulfur in double‐shelled hollow carbon spheres for lithium–sulfur batteries. Angew. Chem. Int. Ed. 51, 9592 (2012).

    CAS  Article  Google Scholar 

  26. 26.

    Z.W. Seh, W.Y. Li, J.J. Cha, G.Y. Zheng, Y. Yang, M.T. Mcdowell, P.C. Hsu, and Y. Cui: Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nat. Commun. 4, 1331 (2012).

    Article  CAS  Google Scholar 

  27. 27.

    Y. Li, J. Dykes, T. Gilliam, and N. Chopra: A new heterostructured SERS substrate: free-standing silicon nanowires decorated with graphene-encapsulated gold nanoparticles. Nanoscale 9, 5263 (2017).

    CAS  Article  Google Scholar 

  28. 28.

    Y. Li, and N. Chopra: Graphene encapsulated gold nanoparticle-quantum dot heterostructures and their electrochemical characterization. Appl. Surf. Sci. 344, 27 (2015).

    CAS  Article  Google Scholar 

  29. 29.

    S.S. Zhang: Role of LiNO3 in rechargeable lithium/sulfur battery. Electrochim. Acta 70, 344 (2012).

    CAS  Article  Google Scholar 

  30. 30.

    C. Barchasz, J.-C. Leprêtre, F. Alloin, and S. Patoux: New insights into the limiting parameters of the Li/S rechargeable cell. J. Power Source 199, 322 (2012).

    CAS  Article  Google Scholar 

  31. 31.

    X. Zheng-Long, J.-K. Kim, and K. Kang: Carbon nanomaterials for advanced lithium–sulfur batteries. Nano Today 19, 84–107 (2018).

    Article  CAS  Google Scholar 

  32. 32.

    P. Xiao, F. Bu, G. Yang, Y. Zhang, and Y. Xu: Integration of graphene, nano sulfur, and conducting polymer into compact, flexible lithium–sulfur battery cathodes with ultrahigh volumetric capacity and superior cycling stability for foldable devices. Adv. Mater. 29, 1703324 (2017).

    Article  CAS  Google Scholar 

  33. 33.

    D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, and J.M. Tour: Improved synthesis of graphene oxide. ACS Nano 4, 4806 (2010).

    CAS  Article  Google Scholar 

  34. 34.

    L. Li, A.-R.O. Raji, H. Fei, Y. Yang, E.L.G. Samuel, and J.M. Tour: Nanocomposite of polyaniline nanorods grown on graphene nanoribbons for highly capacitive pseudocapacitors. ACS Appl. Mater. Interface 5, 6622 (2013).

    CAS  Article  Google Scholar 

  35. 35.

    J. Xu, K. Wang, S.Z. Zu, B.H. Han, and Z. Wei: Hierarchical nanocompo-sites of polyaniline nanowire arrays on graphene oxide sheets with syner-gistic effect for energy storage. ACS Nano 4, 5019 (2010).

    CAS  Article  Google Scholar 

  36. 36.

    L. Hu, J. Tu, S. Jiao, J. Hou, H. Zhu, and D.J. Fray: In situ electrochemical polymerization of a nanorod-PANI–graphene composite in a reverse micelle electrolyte and its application in a supercapacitor. Phys. Chem. Chem. Phys. 14, 15652 (2012).

    CAS  Article  Google Scholar 

  37. 37.

    Y. Li, X. Zhao, P. Yu, and Q. Zhang: Oriented arrays of polyaniline nano-rods grown on graphite nanosheets for an electrochemical supercapacitor. Langmuir 29, 493 (2012).

    CAS  Article  Google Scholar 

  38. 38.

    T.A. Pascal, I. Villaluenga, K.H. Wujcik, D. Devaux, X. Jiang, D.R. Wang, N. Balsara, and D. Prendergast: Liquid sulfur impregnation of micropo-rous carbon accelerated by nanoscale interfacial effects. Nano Lett. 17, 2517–2523 (2017).

    CAS  Article  Google Scholar 

  39. 39.

    N. Li, M. Zheng, H. Lu, Z. Hu, C. Shen, X. Chang, G. Ji, J. Cao, and Y. Shi: High-rate lithium–sulfur batteries promoted by reduced graphene oxide coating. Chem. Commun. 48, 4106 (2012).

    CAS  Article  Google Scholar 

  40. 40.

    Y. Li, and N. Chopra: Structural evolution of cobalt oxide-tungsten oxide nanowire heterostructures for photocatalysis. J. Catal. 329, 514 (2015).

    CAS  Article  Google Scholar 

  41. 41.

    Y. Yang, G. Yu, J.J. Cha, H. Wu, M. Vosgueritchian, Y. Yao, Z. Bao, and Y. Cui: Improving the performance of lithium–sulfur batteries by conductive polymer coating. ACS Nano 5, 9187 (2011).

    CAS  Article  Google Scholar 

  42. 42.

    C. Zu, Y.-S. Su, Y. Fu, and A. Manthiram: Improved lithium–sulfur cells with a treated carbon paper interlayer. Phys. Chem. Chem. Phys. 15, 2291 (2013).

    CAS  Article  Google Scholar 

  43. 43.

    J. Balach, T. Jaumann, and L. Giebeler: Nanosized Li2S-based cathodes derived from MoS2 for high-energy density Li–S cells and Si–Li2S full cells in carbonate-based electrolyte. Energy Storage Mater. 8, 209–216 (2017).

    Article  Google Scholar 

Download references


This research was partly supported by the project funded by the China Postdoctoral Science Foundation (No. 2018M643698) and the National Natural Science Foundation of China (No. 51802258).

Author information



Corresponding author

Correspondence to Qifeng Zhong.

Supplementary materials

Supplementary materials

The supplementary material for this article can be found at

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Jing, R., You, C. et al. Brush-structured sulfur-polyaniline-graphene composite as cathodes for lithium-sulfur batteries. MRS Communications 9, 1355–1360 (2019).

Download citation