Skip to main content

Loss in acoustic metasurfaces: a blessing in disguise

An Erratum to this article was published on 24 December 2020

This article has been updated

Abstract

From being an unfavorable consequence to finding itself as the intended imaginary part of a non-Hermitian system, loss has truly emerged as more of a friend than a foe in the context of acoustic metasurfaces. With the promising features of sub-wavelength geometries and the rapid advances in manufacturing techniques that can enable their realization, loss becomes a central topic of discussion. Further, the capability of introducing and tailoring loss allows it to serve as a new degree of freedom in passive wavefront shaping devices. In this review, the authors look back at the recent progress in the field of lossy acoustic metasurfaces. The background behind loss in deep sub-wavelength geometries and the instinctive responses to treat them and exploit them are overviewed, followed by more recent works that embrace and tailor their behavior for unconventional applications. The forthcoming years for acoustic metasurfaces thus hold several promising avenues for exploration, with loss as the protagonist.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4

Change history

References

  1. 1.

    B. Assouar, B. Liang, Y. Wu, Y. Li, J.C. Cheng, and Y. Jing: Acoustic metasurfaces. Nat. Rev. Mater. (2018). doi:10.1038/s41578-018-0061-4

    Google Scholar 

  2. 2.

    Y. Li and M.B. Assouar: Three-dimensional collimated self-accelerating beam through acoustic metascreen. Sci. Rep. (2015). doi:10.1038/srep17612

    Google Scholar 

  3. 3.

    K. Melde, A.G. Mark, T. Qiu, and P. Fischer: Holograms for acoustics. Nature (2016). doi:10.1038/nature19755

    Google Scholar 

  4. 4.

    Y. Xie, C. Shen, W. Wang, J. Li, D. Suo, B.I. Popa, Y. Jing, and S.A. Cummer: Acoustic holographic rendering with two-dimensional metamaterial-based passive phased array. Sci. Rep. (2016). doi:10.1038/srep35437.

    Google Scholar 

  5. 5.

    Y. Zhu, J. Hu, X. Fan, J. Yang, B. Liang, X. Zhu, and J. Cheng: Fine manipulation of sound via lossy metamaterials with independent and arbitrary reflection amplitude and phase. Nat. Commun. (2018). doi:10.1038/s41467-018-04103-0

    Google Scholar 

  6. 6.

    Y. Cheng, C. Zhou, B.G. Yuan, D.J. Wu, Q. Wei, and X.J. Liu: Ultra-sparse metasurface for high reflection of low-frequency sound based on artificial Mie resonances. Nat. Mater. (2015). doi:10.1038/nmat4393

    Google Scholar 

  7. 7.

    C. Shen, A. Díaz-Rubio, J. Li, and S.A. Cummer: A surface impedance-based three-channel acoustic metasurface retroreflector. Appl. Phys. Lett. (2018). doi:10.1063/1.5025481

    Google Scholar 

  8. 8.

    G.Y. Song, Q. Cheng, T.J. Cui, and Y. Jing: Acoustic planar surface retroreflector. Phys. Rev. Mater. (2018). doi:10.1103/PhysRevMaterials.2.065201

    Google Scholar 

  9. 9.

    C. Shen, Y. Xie, J. Li, S.A. Cummer, and Y. Jing: Asymmetric acoustic transmission through near-zero-index and gradient-index metasurfaces. Appl. Phys. Lett. (2016). doi:10.1063/1.4953264

    Google Scholar 

  10. 10.

    Y. Li, C. Shen, Y. Xie, J. Li, W. Wang, S.A. Cummer, and Y. Jing: Tunable asymmetric transmission via lossy acoustic metasurfaces. Phys. Rev. Lett. (2017). doi:10.1103/PhysRevLett.119.035501

    Google Scholar 

  11. 11.

    Y. Zhu, X. Fan, B. Liang, J. Cheng, and Y. Jing: Ultrathin acoustic metasurface-based schroeder diffuser. Phys. Rev. X (2017). doi:10.1103/PhysRevX.7.021034

    Google Scholar 

  12. 12.

    N. Jiménez, T.J. Cox, V. Romero-García, and J.P. Groby: Metadiffusers: deep-subwavelength sound diffusers. Sci. Rep. (2017). doi:10.1038/s41598-017-05710-5

    Google Scholar 

  13. 13.

    J. Mei, G. Ma, M. Yang, Z. Yang, W. Wen, and P. Sheng: Dark acoustic metamaterials as super absorbers for low-frequency sound. Nat. Commun. (2012). doi:10.1038/ncomms1758

    Google Scholar 

  14. 14.

    Y. Li and B.M. Assouar: Acoustic metasurface-based perfect absorber with deep subwavelength thickness. Appl. Phys. Lett. (2016). doi:10.1063/1.4941338

    Google Scholar 

  15. 15.

    M. Yang and P. Sheng: Sound absorption structures: from porous media to acoustic metamaterials. Annu. Rev. Mater. Res. (2017). doi:10.1146/annurev-matsci-070616-124032

    Google Scholar 

  16. 16.

    M. Yang, S. Chen, C. Fu, and P. Sheng: Optimal sound-absorbing structures. Mater. Horizons (2017). doi:10.1039/c7mh00129k

    Google Scholar 

  17. 17.

    G. Kirchhoff: Ueber den Einfluss der Wärmeleitung in einem Gase auf die Schallbewegung. Ann. Phys. (1868). doi:10.1002/andp.18682100602

    Google Scholar 

  18. 18.

    J.W. Strutt and B. Rayleigh: The theory of sound - volume I. Nature (1877). doi:10.1038/058121a0

    Google Scholar 

  19. 19.

    J.W.S. Rayleigh: The Theory of Sound, Vol. II. (1896).

  20. 20.

    T.J. Cox. Acoustic Absorbers and Diffusers. (Spoon Press, 2002). doi:10.1201/9781482288254

    Google Scholar 

  21. 21.

    G. Theocharis, O. Richoux, V.R. García, A. Merkel, and V. Tournat: Limits of slow sound propagation and transparency in lossy, locally resonant periodic structures. N. J. Phys (2014). doi:10.1088/1367-2630/16/9/093017.

    Google Scholar 

  22. 22.

    M. Molerón, M. Serra-Garcia, and C. Daraio: Visco-thermal effects in acoustic metamaterials: from total transmission to total reflection and high absorption. N. J. Phys (2016). doi:10.1088/1367-2630/18/3/033003.

    Google Scholar 

  23. 23.

    G.P. Ward, R.K. Lovelock, A.R.J. Murray, A.P. Hibbins, J.R. Sambles, and J.D. Smith: Boundary-layer effects on acoustic transmission through narrow slit cavities. Phys. Rev. Lett. (2015). doi:10.1103/PhysRevLett.115.044302

    Google Scholar 

  24. 24.

    V.C. Henríquez, V.M. García-Chocano, and J. Sánchez-Dehesa: Viscothermal losses in double-negative acoustic metamaterials. Phys. Rev. Appl. (2017). doi:10.1103/PhysRevApplied.8.014029

    Google Scholar 

  25. 25.

    Z. Liang and J. Li: Extreme acoustic metamaterial by coiling up space. Phys. Rev. Lett. (2012). doi:10.1103/PhysRevLett.108.114301

    Google Scholar 

  26. 26.

    Y. Li, B. Liang, X. Tao, X.F. Zhu, X.Y. Zou, and J.C. Cheng: Acoustic focusing by coiling up space. Appl. Phys. Lett. (2012). doi:10.1063/1.4769984

    Google Scholar 

  27. 27.

    Y. Xie, A. Konneker, B.I. Popa, and S.A. Cummer: Tapered labyrinthine acoustic metamaterials for broadband impedance matching. Appl. Phys. Lett. (2013). doi:10.1063/1.4831770

    Google Scholar 

  28. 28.

    Z. Liang, T. Feng, S. Lok, F. Liu, K.B. Ng, C.H. Chan, J. Wang, S. Han, S. Lee, and J. Li: Space-coiling metamaterials with double negativity and conical dispersion. Sci. Rep. (2013). doi:10.1038/srep01614

    Google Scholar 

  29. 29.

    Y. Li, X. Jiang, B. Liang, J.C. Cheng, and L. Zhang: Metascreen-based acoustic passive phased array. Phys. Rev. Appl. (2015). doi:10.1103/PhysRevApplied.4.024003

    Google Scholar 

  30. 30.

    Y. Li, S. Qi, and M.B. Assouar: Theory of metascreen-based acoustic passive phased array. New J. Phys. 18, 043024 (2016).

    Google Scholar 

  31. 31.

    Y. Xie, W. Wang, H. Chen, A. Konneker, B.I. Popa, and S.A. Cummer: Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface. Nat. Commun. (2014). doi:10.1038/ncomms6553

    Google Scholar 

  32. 32.

    B. Liu, W. Zhao, and Y. Jiang: Full-angle negative reflection realized by a gradient acoustic metasurface. AIP Adv. (2016). doi:10.1063/1.4967430

    Google Scholar 

  33. 33.

    W. Wang, Y. Xie, B.I. Popa, and S.A. Cummer: Subwavelength diffractive acoustics and wavefront manipulation with a reflective acoustic metasurface. J. Appl. Phys. (2016). doi:10.1063/1.4967738

    Google Scholar 

  34. 34.

    Y. Li, B. Liang, Z.M. Gu, X.Y. Zou, and J.C. Cheng: Reflected wavefront manipulation based on ultrathin planar acoustic metasurfaces. Sci. Rep. (2013). doi:10.1038/srep02546

    Google Scholar 

  35. 35.

    X. Jiang, Y. Li, and L. Zhang: Thermoviscous effects on sound transmission through a metasurface of hybrid resonances. J. Acoust. Soc. Am. (2017). doi:10.1121/1.4979682

    Google Scholar 

  36. 36.

    N.J. Gerard, H. Cui, C. Shen, Y. Xie, X. Zheng, S.A. Cummer, and Y. Jing: Fabrication and experimental demonstration of a hybrid resonant acoustic gradient index metasurface at 40 kHz. Appl. Phys. Lett. (2019). doi:10.1063/1.5095963

    Google Scholar 

  37. 37.

    N.J. Gerard, Y. Li, and Y. Jing: Investigation of acoustic metasurfaces with constituent material properties considered. J. Appl. Phys. (2018). doi:10.1063/1.5007863

    Google Scholar 

  38. 38.

    Y. Zhu and B. Assouar: Systematic design of multiplexed-acoustic-metasurface hologram with simultaneous amplitude and phase modulations. Phys. Rev. Mater. (2019). doi:10.1103/PhysRevMaterials.3.045201

    Google Scholar 

  39. 39.

    J.P. Arenas and M.J. Crocker: Recent trends in porous sound-absorbing materials. Sound Vib. (2010).

    Google Scholar 

  40. 40.

    J.F. Allard. Propagation of Sound in Porous Media. 1993. doi:10.1007/978-94-011-1866-8

    Google Scholar 

  41. 41.

    J. Kang and H.V. Fuchs: Predicting the absorption of open weave textiles and micro-perforated membranes backed by an air space. J. Sound Vib. (1999). doi:10.1006/jsvi.1998.1977

    Google Scholar 

  42. 42.

    D.Y. Maa: Theory and design of microperforated panel sound-absorbing constructions. Sci. Sin. (1975).

    Google Scholar 

  43. 43.

    D.-Y. Maa: Potential of microperforated panel absorber. J. Acoust. Soc. Am. (1998). doi:10.1121/1.423870

    Google Scholar 

  44. 44.

    T.-Y. Huang, C. Shen, and Y. Jing: Membrane- and plate-type acoustic metamaterials. J. Acoust. Soc. Am. (2016). doi:10.1121/1.4950751

    Google Scholar 

  45. 45.

    M. Yang, C. Meng, C. Fu, Y. Li, Z. Yang, and P. Sheng: Subwavelength total acoustic absorption with degenerate resonators. Appl. Phys. Lett. (2015). doi:10.1063/1.4930944

    Google Scholar 

  46. 46.

    G. Ma, M. Yang, S. Xiao, Z. Yang, and P. Sheng: Acoustic metasurface with hybrid resonances. Nat. Mater. (2014). doi:10.1038/nmat3994

    Google Scholar 

  47. 47.

    S. Huang, X. Fang, X. Wang, B. Assouar, Q. Cheng, and Y. Li: Acoustic perfect absorbers via spiral metasurfaces with embedded apertures. Appl. Phys. Lett. (2018). doi:10.1063/1.5063289

    Google Scholar 

  48. 48.

    S. Huang, X. Fang, X. Wang, B. Assouar, Q. Cheng, and Y. Li: Acoustic perfect absorbers via Helmholtz resonators with embedded apertures. J. Acoust. Soc. Am. (2019). doi:10.1121/1.5087128

    Google Scholar 

  49. 49.

    H. Long, Y. Cheng, J. Tao, and X. Liu: Perfect absorption of low-frequency sound waves by critically coupled subwavelength resonant system. Appl. Phys. Lett. (2017). doi:10.1063/1.4973925

    Google Scholar 

  50. 50.

    H. Ryoo and W. Jeon: Perfect sound absorption of ultra-thin metasurface based on hybrid resonance and space-coiling. Appl. Phys. Lett. (2018). doi:10.1063/1.5049696

    Google Scholar 

  51. 51.

    X. Peng, J. Ji, and Y. Jing: Composite honeycomb metasurface panel for broadband sound absorption. J. Acoust. Soc. Am. (2018). doi:10.1121/1.5055847

    Google Scholar 

  52. 52.

    H. Long, S. Gao, Y. Cheng, and X. Liu: Multiband quasi-perfect low-frequency sound absorber based on double-channel Mie resonator. Appl. Phys. Lett. (2018). doi:10.1063/1.5013225

    Google Scholar 

  53. 53.

    Y. Li, X. Jiang, R.Q. Li, B. Liang, X.Y. Zou, L.L. Yin, and J.C. Cheng: Experimental realization of full control of reflected waves with subwavelength acoustic metasurfaces. Phys. Rev. Appl. (2014). doi:10.1103/PhysRevApplied.2.064002

    Google Scholar 

  54. 54.

    G. Memoli, M. Caleap, M. Asakawa, D.R. Sahoo, B.W. Drinkwater, and S. Subramanian: Metamaterial bricks and quantization of meta-surfaces. Nat. Commun. (2017). doi:10.1038/ncomms14608

    Google Scholar 

  55. 55.

    H. Tang, Z. Chen, N. Tang, S. Li, Y. Shen, Y. Peng, X. Zhu, and J. Zang: Hollow-out patterning ultrathin acoustic metasurfaces for multifunctionalities using soft fiber/rigid bead networks. Adv. Funct. Mater. (2018). doi.org/10.1002/adfm.201801127

    Google Scholar 

  56. 56.

    J. Zhao, H. Ye, K. Huang, Z.N. Chen, B. Li, and C.W. Qiu: Manipulation of acoustic focusing with an active and configurable planar metasurface transducer. Sci. Rep. (2014). doi:10.1038/srep06257

    Google Scholar 

  57. 57.

    Y. Shen, X. Zhu, F. Cai, T. Ma, F. Li, X. Xia, Y. Li, C. Wang, and H. Zheng: Active acoustic metasurface: complete elimination of grating lobes for high-quality ultrasound focusing and controllable steering. Phys. Rev. Appl. (2019). doi:10.1103/PhysRevApplied.11.034009

    Google Scholar 

  58. 58.

    Z. Tian, C. Shen, J. Li, E. Reit, Y. Gu, H. Fu, S.A. Cummer, and T.J. Huang: Programmable acoustic metasurfaces. Adv. Funct. Mater. (2019). doi:10.1002/adfm.201808489

    Google Scholar 

  59. 59.

    S. Chen, Y. Fan, Q. Fu, H. Wu, W. Jin, J. Zheng, and F. Zhang: A review of tunable acoustic metamaterials. Appl. Sci. (2018). doi:10.3390/app8091480

    Google Scholar 

  60. 60.

    Y. Xu, Y. Fu, and H. Chen: Planar gradient metamaterials. Nat. Rev. Mater. (2016). doi:10.1038/natrevmats.2016.67

    Google Scholar 

  61. 61.

    N. Yu, P. Genevet, M.A. Kats, F. Aieta, J.P. Tetienne, F. Capasso, and Z. Gaburro: Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science (2011). doi:10.1126/science.1210713

    Google Scholar 

  62. 62.

    J. Mei and Y. Wu: Controllable transmission and total reflection through an impedance-matched acoustic metasurface. N. J. Phys (2014). doi:10.1088/1367-2630/16/12/123007.

    Google Scholar 

  63. 63.

    C. Shen and S.A. Cummer: Harnessing multiple internal reflections to design highly absorptive acoustic metasurfaces. Phys. Rev. Appl. (2018). doi:10.1103/PhysRevApplied.9.054009

    Google Scholar 

  64. 64.

    Y. Fu, C. Shen, Y. Cao, L. Gao, H. Chen, C.T. Chan, S.A. Cummer, and Y. Xu: Reversal of transmission and reflection based on acoustic metagratings with integer parity design. Nat. Commun. (2019). doi:10.1038/s41467-019-10377-9

    Google Scholar 

  65. 65.

    F. Ju, Y. Tian, Y. Cheng, and X. Liu: Asymmetric acoustic transmission with a lossy gradient-index metasurface. Appl. Phys. Lett. (2018). doi:10.1063/1.5032263

    Google Scholar 

  66. 66.

    C. Shen, Y. Xie, J. Li, S.A. Cummer, and Y. Jing: Acoustic metacages for sound shielding with steady air flow. J. Appl. Phys. (2018). doi:10.1063/1.5009441

    Google Scholar 

  67. 67.

    Y. Fu, Y. Cao, and Y. Xu: Multifunctional reflection in acoustic metagratings with simplified design. Appl. Phys. Lett. (2019). doi:10.1063/1.5083081

    Google Scholar 

  68. 68.

    X.F. Zhu and S.K. Lau: Reflected wave manipulation via acoustic metamaterials with decoupled amplitude and phase. Appl. Phys. A Mater. Sci. Process. (2019). doi:10.1007/s00339-019-2687-5

    Google Scholar 

  69. 69.

    X. Wang, X. Fang, D. Mao, Y. Jing, and Y. Li: Extremely asymmetrical acoustic metasurface mirror at the exceptional point. Phys. Rev. Lett. (2019), ( in press ).

    Google Scholar 

  70. 70.

    Y. Zhu and B. Assouar: Multifunctional acoustic metasurface based on an array of Helmholtz resonators. Phys. Rev. B (2019). doi:10.1103/PhysRevB.99.174109

    Google Scholar 

  71. 71.

    C.M. Bender and S. Boettcher: Real spectra in non-Hermitian hamiltonians having PT symmetry. Phys. Rev. Lett. (1998). doi:10.1103/PhysRevLett.80.5243

    Google Scholar 

  72. 72.

    C.M. Bender: Making sense of non-Hermitian hamiltonians. Rep. Prog. Phys. (2007). doi:10.1088/0034-4885/70/6/R03

    Google Scholar 

  73. 73.

    C.E. Rüter, K.G. Makris, R. El-Ganainy, D.N. Christodoulides, M. Segev, and D. Kip: Observation of parity-time symmetry in optics. Nat. Phys. (2010). doi:10.1038/nphys1515

    Google Scholar 

  74. 74.

    B. Peng, S.K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G.L. Long, S. Fan, F. Nori, C.M. Bender, and L. Yang: Parity-time-symmetric whispering-gallery microcavities. Nat. Phys. (2014). doi:10.1038/nphys2927

    Google Scholar 

  75. 75.

    L. Feng, Y.L. Xu, W.S. Fegadolli, M.H. Lu, J.E.B. Oliveira, V.R. Almeida, Y.F. Chen, and A. Scherer: Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. Nat. Mater. (2013). doi:10.1038/nmat3495

    Google Scholar 

  76. 76.

    Y. Sun, W. Tan, H.Q. Li, J. Li, and H. Chen: Experimental demonstration of a coherent perfect absorber with pt phase transition. Phys. Rev. Lett. (2014). doi:10.1103/PhysRevLett.112.143903

    Google Scholar 

  77. 77.

    Y.D. Chong, L. Ge, and A.D. Stone: PT-symmetry breaking and laser-absorber modes in optical scattering systems. Phys. Rev. Lett. (2011). doi:10.1103/PhysRevLett.106.093902

    Google Scholar 

  78. 78.

    L. Feng, Z.J. Wong, R.M. Ma, Y. Wang, and X. Zhang: Single-mode laser by parity-time symmetry breaking. Science (2014). doi:10.1126/science.1258479

    Google Scholar 

  79. 79.

    H. Hodaei, M.A. Miri, M. Heinrich, D.N. Christodoulides, and M. Khajavikhan: Parity-time-symmetric microring lasers. Science (2014). doi:10.1126/science.1258480

    Google Scholar 

  80. 80.

    B. Peng, S.K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C.M. Bender, F. Nori, and L. Yang: Loss-induced suppression and revival of lasing. Science (2014). doi:10.1126/science.1258004

    Google Scholar 

  81. 81.

    H. Hodaei, A.U. Hassan, S. Wittek, H.G. Gracia, R.E. Ganainy, D.N. Christodoulides, and M. Khajavikhan: Enhanced sensitivity at higher-order exceptional points. Nature (2017). doi:10.1038/nature23280

    Google Scholar 

  82. 82.

    W. Chen, SK Özdemir, G. Zhao, J. Wiersig, and L. Yang: Exceptional points enhance sensing in an optical microcavity. Nature (2017). doi:10.1038/nature23281

    Google Scholar 

  83. 83.

    R. Fleury, D. Sounas, and A. Alù: An invisible acoustic sensor based on parity-time symmetry. Nat. Commun. (2015). doi:10.1038/ncomms6905

    Google Scholar 

  84. 84.

    X. Zhu, H. Ramezani, C. Shi, J. Zhu, and X. Zhang: PT-symmetric acoustics. Phys. Rev. X (2014). doi:10.1103/PhysRevX.4.031042.

    Google Scholar 

  85. 85.

    H.-X. Li, M. Rosendo-Lopez, Y.-F. Zhu, X.D. Fan, D. Torrent, B. Liang, J.C. Cheng, and J. Christensen: Ultrathin acoustic parity-time symmetric metasurface cloak. Research (2019). doi: 10.34133/2019/8345683

    Google Scholar 

  86. 86.

    C. Shi, M. Dubois, Y. Chen, L. Cheng, H. Rameszani, Y. Wang, and X. Zhang: Accessing the exceptional points of parity-time symmetric acoustics. Nat. Commun. (2016). doi:10.1038/ncomms11110

    Google Scholar 

  87. 87.

    C. Shen, J. Li, X. Peng, and S.A. Cummer: Synthetic exceptional points and unidirectional zero reflection in non-Hermitian acoustic systems. Phys. Rev. Mater. (2018). doi:10.1103/PhysRevMaterials.2.125203

    Google Scholar 

  88. 88.

    W. Zhu, X. Fang, D. Li, Y. Sun, Y. Li, Y. Jing, and H. Chen: Simultaneous observation of a topological edge state and exceptional point in an open and non-Hermitian acoustic system. Phys. Rev. Lett. (2018). doi:10.1103/PhysRevLett.121.124501

    Google Scholar 

  89. 89.

    K. Ding, G. Ma, M. Xiao, Z.Q. Zhang, and C.T. Chan: Emergence, coalescence, and topological properties of multiple exceptional points and their experimental realization. Phys. Rev. X (2016). doi:10.1103/PhysRevX.6.021007

    Google Scholar 

  90. 90.

    K. Ding, G. Ma, Z.Q. Zhang, and C.T. Chan: Experimental demonstration of an anisotropic exceptional point. Phys. Rev. Lett. (2018). doi:10.1103/PhysRevLett.121.085702

    Google Scholar 

  91. 91.

    M. Sakhdari, M. Farhat, and P.Y. Chen: PT-symmetric metasurfaces: wave manipulation and sensing using singular points. N. J. Phys (2017). doi:10.1088/1367-2630/aa6bb9.

    Google Scholar 

  92. 92.

    F. Monticone, C.A. Valagiannopoulos, and A. Alù: Parity-time symmetric nonlocal metasurfaces: all-angle negative refraction and volumetric imaging. Phys. Rev. X (2016). doi:10.1103/PhysRevX.6.041018.

    Google Scholar 

  93. 93.

    Y. Ra’di, D.L. Sounas, A. Alù, and S.A. Tretyakov: Parity-time-symmetric teleportation. Phys. Rev. B (2016). doi:10.1103/PhysRevB.93.235427

    Google Scholar 

  94. 94.

    M. Kang, J. Chen, and Y.D. Chong: Chiral exceptional points in metasurfaces. Phys. Rev. A (2016). doi:10.1103/PhysRevA.94.033834

    Google Scholar 

  95. 95.

    Y. Jin, R. Kumar, O. Poncelet, O. Mondain-Monval, and T. Brunet: Flat acoustics with soft gradient-index metasurfaces. Nat. Commun. (2019). doi:10.1038/s41467-018-07990-5

    Google Scholar 

  96. 96.

    J. Chen, J. Rao, D. Lisevych, and Z. Fan: Broadband ultrasonic focusing in water with an ultra-compact metasurface lens. Appl. Phys. Lett. (2019). doi:10.1063/1.5090956

    Google Scholar 

  97. 97.

    P.A. Cotterill, D. Nigro, I.D. Abrahams, E. Garcia-Neefjes, and W.J. Parnell: Thermo-viscous damping of acoustic waves in narrow channels: a comparison of effects in air and water. J. Acoust. Soc. Am. (2018). doi:10.1121/1.5078528

    Google Scholar 

  98. 98.

    A. Díaz-Rubio and S.A. Tretyakov: Acoustic metasurfaces for scattering-free anomalous reflection and refraction. Phys. Rev. B (2017). doi:10.1103/PhysRevB.96.125409

    Google Scholar 

  99. 99.

    J. Li, C. Shen, A. Díaz-Rubio, S.A. Tretyakov, and S.A. Cummer: Systematic design and experimental demonstration of bianisotropic metasurfaces for scattering-free manipulation of acoustic wavefronts. Nat. Commun. (2018). doi:10.1038/s41467-018-03778-9

    Google Scholar 

  100. 100.

    S.R. Craig, X. Su, A. Norris, and C. Shi: Experimental realization of acoustic bianisotropic gratings. Phys. Rev. Appl. (2019). doi:10.1103/PhysRevApplied.11.061002.

    Google Scholar 

  101. 101.

    X. Wang, A. Díaz-Rubio, V.S. Asadchy, G. Ptitcyn, A.A. Generalov, J.A. Laurinaho, and S.A. Tretyakov: Extreme asymmetry in metasurfaces via evanescent fields engineering: angular-asymmetric absorption. Phys. Rev. Lett. (2018). doi:10.1103/PhysRevLett.121.256802

    Google Scholar 

  102. 102.

    Y. Ra’Di, D.L. Sounas, and A. Alù: Metagratings: beyond the limits of graded metasurfaces for wave front control. Phys. Rev. Lett. (2017). doi:10.1103/PhysRevLett.119.067404

    Google Scholar 

  103. 103.

    L. Quan, Y. Ra’Di, D.L. Sounas, and A. Alù: Maximum willis coupling in acoustic scatterers. Phys. Rev. Lett. (2018). doi:10.1103/PhysRevLett.120.254301

    Google Scholar 

  104. 104.

    L. Quan and A. Alù: Passive acoustic metasurface with unitary reflection based on nonlocality. Phys. Rev. Appl. (2019). doi:10.1103/PhysRevApplied.11.054077

    Google Scholar 

  105. 105.

    T.J. Cox: Fast time domain modeling of surface scattering from reflectors and diffusers. J. Acoust. Soc. Am. (2015). doi:10.1121/1.4921675

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yun Jing.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gerard, N.J., Jing, Y. Loss in acoustic metasurfaces: a blessing in disguise. MRS Communications 10, 32–41 (2020). https://doi.org/10.1557/mrc.2019.148

Download citation