Skip to main content

Three-dimensional-printed molds and materials for injection molding and rapid tooling applications

Abstract

This Prospective covers an overview of the injection molding process and the importance of mold design and tooling considerations, important material requirements and thermal properties for molds, polymer material requirements for injection molding, mold flow analysis, and the promise of using the 3D printing process for mold fabrication. The second part demonstrates the injection molding process using 3D-printed polymer molds and its suitability for low-run productions. 3D-printed molds using stereolithography and fused filament fabrication have been injected with polylactic acid, and the quality of the injected parts was assessed in terms of dimensional accuracy and the damage mechanisms during fabrication.

This is a preview of subscription content, access via your institution.

Table I
Table II
Table III
Figure 1
Figure 2
Table IV
Figure 3
Figure 4
Table V
Figure 5

References

  1. 1.

    Stratasys: https://www.stratasysdirect.com/manufacturing-services/subtractive-manufacturing/3d-printing-expands-traditional-manufacturing (accessed April 2019).

  2. 2.

    Jaycon Systems: https://medium.com/jaycon-systems/why-is-injection-molding-so-expensive-eda69b6fccb5

  3. 3.

    P.A. Kobryn, N.R. Ontko, L.P. Perkins, and J.S. Tiley: Additive Manufacturing of Aerospace Alloys for Aircraft Structures. Air Force Research Lab Wright-Patterson AFB OH Materials and Manufacturing Directorate, 2006.

    Google Scholar 

  4. 4.

    V.T. Le, H. Paris, and G. Mandil: Process planning for combined additive and subtractive manufacturing technologies in a remanufacturing context. J. Manuf. Syst. 44, 243 (2017).

    Article  Google Scholar 

  5. 5.

    J.R.C. Dizon, A.H. Espera, Q. Chen, and R. Advincula: Mechanical characterization of 3D-printed polymers. Addit. Manuf. 20, 44 (2018).

    CAS  Google Scholar 

  6. 6.

    Stratasys, 3D Printing and Dental Implants: http://www.stratasys.com/resources/white-papers/3d-printing-and-dental-implants (accessed June 2017).

    Google Scholar 

  7. 7.

    Formlabs: https://3d.formlabs.com/injection-molding/ (accessed May 2019).

  8. 8.

    D.V. Rosato and M.G. Rosato: Injection Molding Handbook, 3rd ed. 23 (Springer Science+Business Media, New York, 2000).

    Book  Google Scholar 

  9. 9.

    Engineers Edge: https://www.engineersedge.com/manufacturing/injec-tion-molding-review.htm (accessed April 2019).

  10. 10.

    R.M. Khan and G. Acharya: Plastic injection molding process and its aspects for quality: a review. Eur. J. Adv. Eng. Technol. 3, 66–70 (2016).

    Google Scholar 

  11. 11.

    W.G. Frizelle: Injection molding technology. In Applied Plastics Engineering Handbook, 2nd ed. Processing, Materials, and Applications, Plastics Design Library, edited by Myer Kutz (William Andrew/Elsevier, Norwich, NY, 2017) pp. 191–202.

    Google Scholar 

  12. 12.

    S.J.A. Rizvi: Effect of injection molding parameters on crystallinity and mechanical properties of isotactic polypropylene. Int. J. Plast. Technol. 21, 404–426 (2017).

    CAS  Article  Google Scholar 

  13. 13.

    T. Rogers: Everything you need to know about injection molding. https://www.creativemechanisms.com/blog/everything-you-need-to-know-about-injection-molding (accessed April 2019).

    Google Scholar 

  14. 14.

    Engineers Edge: https://www.engineersedge.com/manufacturing/injection-molding-applications.htm (accessed April 2019).

  15. 15.

    P.K. Johnson: Metal injection molding trends report. Int. J. Powder Metall. 55, 11 (2019).

    Google Scholar 

  16. 16.

    J. Greener and R. Weimberg-Freidl: Injection molding for microfluidics applications. Precision Inject. Mold 169, 169–175 (1990).

    Google Scholar 

  17. 17.

    A.C. Liou and R.H. Chen: Injection molding of polymer micro- and sub-micron structures with high-aspect ratios. Int. J. Adv. Manuf. Technol. 28, 1097 (2006).

    Article  Google Scholar 

  18. 18.

    3D Systems: https://www.3dsystems.com/quickparts/learning-center/ injection-molding-basics (accessed April 2019).

  19. 19.

    A.R. Agrawal, I.O. Pandelidis, and M. Pecht: Injection molding process control: a review. Polym. Eng. Sci. 27, 1 (1987).

    Article  Google Scholar 

  20. 20.

    R.A. Malloy: Prototyping and Experimental Stress Analysis, Plastic Part Design for Injection Molding: An Introduction (Hanser Publishers, Munich; New York; Cincinnati, 1994).

    Google Scholar 

  21. 21.

    H. S. Park and X.-P. Dang: Technology for improving productivity and quality of injection molding. In DAAAM International Scientific Book, edited by Branko Katalinik (DAAAM International Publishing, DAAAM International Vienna DAAAM scriptorium GmbH, 2018), pp. 185–194.

    Google Scholar 

  22. 22.

    E. Sachs, E. Wylonis, S. Allen, M. Cima, and H. Guo: Production of injection molding tooling with conformal cooling channels using the three dimensional printing process. Polym. Eng. Sci. 40, 1232 (2000).

    CAS  Article  Google Scholar 

  23. 23.

    K.M.B. Jansen, D.J. Van Dijk, and M.H. Husselman: Effect of processing conditions on shrinkage in injection molding. Polym. Eng. Sci. 38, 838 (1998).

    CAS  Article  Google Scholar 

  24. 24.

    K.M.B. Jansen and G. Titomanlio: Effect of pressure history on shrinkage and residual stresses: injection molding with constrained shrinkage. Polym. Eng. Sci. 36, 2029 (1996).

    CAS  Article  Google Scholar 

  25. 25.

    General Electric: http://plasticwright.com/files/8314/0476/4159/GE_plastic_design.pdf (accessed May 2019).

  26. 26.

    A. B. Varotsis: https://www.3dhubs.com/knowledge-base/injection-molding-manufacturing-technology-explained%0D

  27. 27.

    T. Tremblay: Injection Molding Part Design for Dummies (Proto Labs, John Wiley & Sons, New York, 2012).

    Google Scholar 

  28. 28.

    D. O. Kazmer: Injection Mold Design Engineering (Hanser, Munich, 2007).

    Book  Google Scholar 

  29. 29.

    A. Adhikari, T. Bourgade, and A. Asundi: Residual stress measurement for injection molded components. Theor. Appl. Mech. Lett. 6, 152 (2016).

    Article  Google Scholar 

  30. 30.

    B.K. Kim and J.W. Min: Residual stress distributions and their influence onpost-manufacturing deformation of injection-molded plastic parts. J. Mater. Process. Technol. 245, 215 (2017).

    Article  Google Scholar 

  31. 31.

    A. Guevara-Morales and U. Figueroa-Lopez: Residual stresses in injection molded products. J. Mater. Sci. 49, 4399 (2014).

    CAS  Article  Google Scholar 

  32. 32.

    B.H. Lee and B.H. Kim: Variation of part wall thicknesses to reduce warp-age of injection-molded part: robust design against process variability. Polym. Plast. Technol. Eng. 36, 791 (1997).

    CAS  Article  Google Scholar 

  33. 33.

    E. C. Bernhadt: CAE-Computer Aided Engineering for Injection Molding (Hanser Publishers, Munich; New York: Cincinnati, 1983).

    Google Scholar 

  34. 34.

    D. Masato, J. Rathore, M. Sorgato, S. Carmignato, and G. Lucchetta: Analysis of the shrinkage of injection-molded fiber-reinforced thin-wall parts. Mater. Des. 132, 496 (2017).

    CAS  Article  Google Scholar 

  35. 35.

    S. Hazenbosch: How to design parts for injection molding. https://www.3dhubs.com/knowledge-base/how-design-parts-injection-molding.

  36. 36.

    I. Pandelidis and Q. Zou: Optimization of injection molding design. Part I: gate location optimization. Polym. Eng. Sci 30, 873–882 (1990).

    CAS  Article  Google Scholar 

  37. 37.

    R. Kerstra: TOOLING: how to select the right tool steel for mold cavities. Plastics Technol (2016). https://www.ptonline.com/articles/tooling-how-to-select-the-right-tool-steel-for-mold-cavities.

    Google Scholar 

  38. 38.

    Kaysun Corporation: https://www.ecnmag.com/article/2013/05/mold-design-tooling-injection-molding.

  39. 39.

    Jaycon Systems: https://medium.com/jaycon-systems/injection-mold-tooling-materials-aluminum-vs-steel-7b5f64ee1112 (accessed May 2019).

  40. 40.

    A. Hamasaiid: https://www.moldmakingtechnology.com/articles/making-the-right-mold-material-selection-for-thermal-management-of-molds-and-inserts (accessed May 2019).

  41. 41.

    Misumi: https://www.misumi-techcentral.com/tt/en/mold/2011/08/091-thermal-expansion-of-molds.html (accessed May 2019).

  42. 42.

    S.M. Shelton: Thermal conductivity of some irons and steels over the temperature range of 100 to 500C. Part Bur. Stand. J. Res. 12, 441–450 (1934).

    Article  Google Scholar 

  43. 43.

    W.D. Callister Jr.: Materials Science and Engineering: An Introduction, 7th ed. (John Wiley & Sons, Inc., New York, NY, 2007).

    Google Scholar 

  44. 44.

    V. Goodship, B. Middleton, and R. Cherrington: Design and manufacture of plastic components for multifunctionality. In Structural Composites, Injection Molding, and 3D Printing, Chapter 4: Injection Molding of Thermoplastics, 1st ed. (William Andrew/Elsevier, Norwich, NY, 2015) pp. 103–170.

    Google Scholar 

  45. 45.

    Stratasys: Demonstration of an Effective Design Validation Tool for 3D Printed Injection Molds (3DPIM): https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwiqmOKvxpziAhVQ GKYKHeUaAXAQFjAAegQICBAC&url=https://%3A%2F%2Fwww.stratasys. co.jp%2F-%2Fmedia%2Ffiles%2Fwhite-papers-new%2Fwp_pj_effective designvalidation_0417a-web.pdf&usg=AOvVaw2GqbovdMtGljW33D5ytDYG (accessed May 2019).

    Google Scholar 

  46. 46.

    ASTM F2792: Standard terminology for additive manufacturing technologies (No. F2792-12a). ASTM Int. 2–4 (2013). doi:10.1520/ F2792-12A.2.

    Google Scholar 

  47. 47.

    P.C. Sai and S. Yeole: Fused deposition modeling: insights. Int. Conf. Adv. Des. Manuf. 1345–1350 (2014).

    Google Scholar 

  48. 48.

    A.C. De Leon, Q. Chen, N.B. Palaganas, J.O. Palaganas, J. Manapat, and R.C. Advincula: High performance polymer nanocomposites for additive manufacturing applications. React. Funct. Polym. 103, 141 (2016).

    Article  CAS  Google Scholar 

  49. 49.

    J.R.C. Dizon, Q. Chen, A.D. Valino, and R.C. Advincula: Thermo-mechanical and swelling properties of three-dimensional-printed poly (ethylene glycol) diacrylate/silica nanocomposites. MRS Commun. 9, 209–217 (2019).

    CAS  Article  Google Scholar 

  50. 50.

    D. Afonso, L. Pires, R.A. de Sousa, and R. Torcato: Direct rapid tooling for polymer processing using sheet metal tools. Proc. Manuf. 13, 102–108 (2017).

    Google Scholar 

  51. 51.

    A. Rosochowski, and A. Matuszak: Rapid tooling: the state of the art. J. Mater. Process Technol. 106, 191–198 (2000).

    Article  Google Scholar 

  52. 52.

    S. Jayanthi, B. Bokuf, R. Mcconnell, R.J. Speer, and P.S. Fussell: Stereolithographic injection molds for direct tooling. In Solid Freeform Symposium (The University of Texas at Austin, Texas Scholar Works, University of Texas Libraries, Austin, TX, 1997) pp. 275–286.

    Google Scholar 

  53. 53.

    Y.M. Chen and J.J. Liu: Cost-effective design for injection molding. Robot. CIM-Int. Manuf. 15, 1–21 (1999).

    CAS  Article  Google Scholar 

  54. 54.

    H.S. Wang, Y.N. Wang, and Y.C. Wang: Cost estimation of plastic injection molding parts through integration of PSO and BP neural network. Expert Syst. Appl. 40, 418–428 (2013).

    CAS  Article  Google Scholar 

  55. 55.

    D.V. Rosato and M.G. Rosato: Injection Molding Handbook (Springer Science & Business Media, Berlin/Heidelberg, Germany, 2012).

    Google Scholar 

  56. 56.

    P. Dewhurst and G. Boothroyd: Early cost estimating in product design. J. Manuf. Syst. 7, 183–191 (1988).

    Article  Google Scholar 

  57. 57.

    D. Snelling, Q. Li, N. Meisel, C.B. Williams, R.C. Batra, and A.P. Druschitz: Lightweight metal cellular structures fabricated via 3D printing of sand cast molds. Adv. Eng. Mater. 17, 923–932 (2015).

    CAS  Article  Google Scholar 

  58. 58.

    D. Bak: Rapid prototyping or rapid production? 3D printing processes move industry towards the latter. Assembly Autom. 23, 340–345 (2003).

    Article  Google Scholar 

  59. 59.

    J. Chimento, M.J. Jason Highsmith, and N. Crane: 3D printed tooling for thermoforming of medical devices. Rapid Prototyp. J. 17, 387–392 (2011).

    Article  Google Scholar 

  60. 60.

    Y. Hwang, O.H. Paydar, and R.N. Candler: 3D printed molds for non-planar PDMS microfluidic channels. Sensors Actuat. A: Phys. 226, 137–142 (2015).

    CAS  Article  Google Scholar 

  61. 61.

    M.A. León-Cabezas, A. Martínez-García, and F.J. Varela-Gandía: Innovative advances in additive manufactured moulds for short plastic injection series. Proc. Manuf. 13, 732–737 (2017).

    Google Scholar 

  62. 62.

    S. Ma, I. Gibson, G. Balaji, and Q.J. Hu: Development of epoxy matrix composites for rapid tooling applications. J. Mater. Process. Technol. 192–193, 7–82 (2007).

    Google Scholar 

  63. 63.

    S. Rahmati and P. Dickens: Rapid tooling analysis of Stereolithography injection mould tooling. Int. J. Mach. Tools Manuf. 47, 740–747 (2007).

    Article  Google Scholar 

  64. 64.

    B. Redwood: http:www.3dhubs.com/knowledge-base/3d-printing-low-run-injection-molds.

  65. 65.

    E. Vojnová: The benefits of a conforming cooling systems the molds in injection moulding process. Proc. Eng. 149, 53–543 (2016).

    Article  Google Scholar 

  66. 66.

    K-.H. Chang: Chapter 15-product cost estimating.In e-Design, edited by K.-H. Chang (Academic Press, Boston, MA, 2015), pp. 787–844.

    Chapter  Google Scholar 

  67. 67.

    J. Noble, K. Walczak, and D. Dornfeld: Rapid tooling injection molded prototypes: a case study in artificial photosynthesis technology. Proc. CIRP 14, 251–256 (2014).

    Article  Google Scholar 

  68. 68.

    Trinseo: http://www.trinseo.com/Products/Plastics/Products/Polystyrene/STYRON (accessed May 2019).

  69. 69.

    Plexiglas: https://www.plexiglas.com/en/media/news/news/Arkemas-Altuglas-International-business-achieves-new-levels-of-heat-resistance-with-Plexiglas-HT121-acrylic-resin/ (accessed May 2019).

  70. 70.

    Sabic: https://www.sabic.com (accessed May 2019).

  71. 71.

    Victrex: https://www.victrex.com/∼/media/datasheets/victrex_tds_450g. pdf (accessed May 2019).

  72. 72.

    A.A. Dzulkipli and M. Azuddin: Study of the effects of injection molding parameter on weld line formation. Proc. Eng. 184, 663–672 (2017).

    CAS  Article  Google Scholar 

  73. 73.

    W. Guo, H. Mao, B. Li, and X. Guo: Influence of processing parameters on molding process in microcellular injection molding. Proc. Eng. 81, 670–675 (2014).

    CAS  Article  Google Scholar 

  74. 74.

    M.D. Azaman, S.M. Sapuan, S. Sulaiman, E.S. Zainudin, and A. Khalina: Shrinkages and warpage in the processability of wood-filled polypropylene composite thin-walled parts formed by injection molding. Mater. Des. 52, 1018–1026 (2013).

    CAS  Article  Google Scholar 

  75. 75.

    Matweb: Nylene PA6/6 Glass Filled 5113 HS Nylon 6/6 http://www.mat-web.com/.

  76. 76.

    Covestro: Covestro Resins https://solutions.covestro.com.

  77. 77.

    S.H. Tang, Y.J. Tan, S.M. Sapuan, S. Sulaiman, N. Ismail, and R. Samin: The use of Taguchi method in the design of plastic injection mould for reducing warpage. J. Mater. Process. Technol. 182, 418–426 (2007).

    CAS  Article  Google Scholar 

  78. 78.

    V. R. Sastri: Commodity thermoplastics. In Plastics in Medical Devices (William Andrew/Elsevier, Norwich, NY, 2010) pp. 73–119.

    Chapter  Google Scholar 

  79. 79.

    V. R. Sastri: Materials used in medical devices. In Plastics in Medical Devices (William Andrew/Elsevier, Norwich, NY, 2014) pp. 19–31.

    Chapter  Google Scholar 

  80. 80.

    H. Maddah: Polypropylene as a promising plastic: a review. Am. J. Polym. Sci. 6, 1–11 (2016). doi: 10.5923/j.ajps.20160601.01.

    CAS  Google Scholar 

  81. 81.

    A. Pye: High performance engineering plastics. Mater. Des. 3, 407–409 (1982).

    Article  Google Scholar 

  82. 82.

    N.D. Polychronopoulos and J. Vlachopoulos: Functional Polymers. Acta Mater. 48, 253–262 (2019).

    Google Scholar 

  83. 83.

    D. S. John Vlachopoulos: The role of rheology in polymer extrusion, 2003. https://www.researchgate.net/publication/266472193_The_Role_of_Rheology_in_Polymer_Extrusion.

    Google Scholar 

  84. 84.

    S. Imihezri, S. Shaharuddin, and M.S. Salit: A review of the effect of moulding parameters on the performance. Turk. J. Eng. Environ. Sci. 30, 23–34 (2006).

    Google Scholar 

  85. 85.

    S.A. Jahan, T. Wu, Y. Zhang, H. El-Mounayri, A. Tovar, J. Zhang, D. Acheson, R. Nalim, X. Guo, and W.H. Lee: Implementation of conformal cooling & topology optimization in 3D printed stainless steel porous structure injection molds. Proc. Manuf. 5, 901–915 (2016).

    Google Scholar 

  86. 86.

    H. Hassan, N. Regnier, C. Le Bot, and G. Defaye: 3D study of cooling system effect on the heat transfer during polymer injection molding. Int. J. Therm. Sci. 49, 161–169 (2010).

    CAS  Article  Google Scholar 

  87. 87.

    B. Ozcelik, E. Kuram, and M.M. Topal: Investigation the effects of obstacle geometries and injection molding parameters on weld line strength using experimental and finite element methods in plastic injection molding. Int. Commun. Heat Mass Transf. 39, 275–281 (2012).

    CAS  Article  Google Scholar 

  88. 88.

    J. Bralla: Design for Manufacturability Handbook (McGraw-Hill Handbooks), 2nd ed (McGraw-Hill Education, New York, 1998).

    Google Scholar 

  89. 89.

    Stack Exchange: https://3dprinting.stackexchange.com/questions/1083/ layer-delamination

  90. 90.

    LyondellBasell: https://www.lyondellbasell.com/en/products-technology/ polymers/process-type/injection-molding/ (accessed May 2019).

  91. 91.

    G. Singh and A. Verma: A brief review on injection moulding manufacturing process. Mater. Today Proc. 4, 1423–1433 (2017).

    Article  Google Scholar 

  92. 92.

    Z. Chen and L.S. Turng: A review of current developments in process and quality control for injection molding. Adv. Polym. Techn. 24, 16–182 (2005). https://doi.org/10.1002/adv.20046.

    Article  CAS  Google Scholar 

  93. 93.

    Y. Amer, M. Moayyedian, Z. Hajiabolhasani, and L. Moayyedian: Reducing warpage in injection moulding processes using Taguchi Method Approach: ANOVA. In Proceedings of the IASTED International Conference on Engineering and Applied Science (EAS) (International Association of Science and Technology for Development, Colombo, Sri Lanka, 2012). doi:10.2316/P.2012.785-089.

    Google Scholar 

  94. 94.

    S.H. Tang, Y.M. Kong, S.M. Sapuan, R. Samin, and S. Sulaiman: Design and thermal analysis of plastic injection mould. J. Mater. Process. Technol. 171, 259–267 (2006).

    CAS  Article  Google Scholar 

  95. 95.

    Samson Teklehaimanot, Simulation and Design of a plastic injection Mold: A Joint mold for credit card and USB holder: https://www.the-seus.fi/bitstream/handle/10024/41114/Samson%20Teklehaimanot%20 Final%20Thesis.pdf

  96. 96.

    Javelin: http:www.javelin-tech.com/3d/manufacture/molds.

  97. 97.

    H. Watkin: https://all3dp.com/fraunhofer-ipa-combine-3d-printing-injection-molding-advantages/

  98. 98.

    Z. Quan, A. Wu, M. Keefe, X. Qin, J. Yu, J. Suhr, J.H. Byun, B.S. Kim, and T.W. Chou: Additive manufacturing of multi-directional preforms for composites:opportunities and challenges. Mater. Today 18, 503–512 (2015).

    CAS  Article  Google Scholar 

  99. 99.

    A. H. Espera, J. R. C. Dizon, Q. Chen, and R. C. Advincula: 3D-printing and advanced manufacturing for electronics. Prog. Addit. Manuf 4, 245–267 (2019).

    Article  Google Scholar 

  100. 100.

    Q. Chen, J. D. Mangadlao, J. Wallat, A. De Leon, J.K. Pokorski, and R.C. Advincula: 3D printing biocompatible polyurethane/poly(lactic acid)/gra-phene oxide nanocomposites: anisotropic properties. ACS Appl. Mater. Interfaces 9, 401–4023 (2016). https://doi.org/10.1021/acsami.6b11793.

    Google Scholar 

Download references

Acknowledgments

This work is supported by the Department of Science and Technology—Philippine Council for Industry, Energy, and Emerging Technology Research and Development (DOST-PCIEERD) and PETRO Case. A portion of this work (R.C.A and Q.C.) is funded by the Department of Energy’s Kansas City National Security Campus, operated by Honeywell Federal Manufacturing & Technologies, LLC, under contract number DE-NA0002839.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rigoberto C. Advincula.

Appendices

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2019.147.

Disclaimer

The Department of Energy’s Kansas City National Security Campus is operated and managed by Honeywell Federal Manufacturing & Technologies, LLC under contract number DE-NA0002839.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dizon, J.R.C., Valino, A.D., Souza, L.R. et al. Three-dimensional-printed molds and materials for injection molding and rapid tooling applications. MRS Communications 9, 1267–1283 (2019). https://doi.org/10.1557/mrc.2019.147

Download citation