Skip to main content

Anisotropic behavior of tensile properties in a hot-extruded polycrystalline nickel-base superalloy

Abstract

The authors report an unexpected anisotropy in tensile properties of a polycrystalline nickel-base superalloy after hot extrusion. The tensile strength of longitudinal specimens (parallel to extrusion direction) is 170–276 MPa higher than that of the transverse counterparts at the temperature ranging from 25 to 750°C. Microstructural investigation excludes possible causes leading to this phenomenon such as variation in the grain size, texture, and γ precipitates in two orientations. However, further transmission electron microscopy observation reveals that plenty of twins uniquely exist in longitudinal tensile samples after deformation which are probably responsible for the mechanical gap between the two orientations.

This is a preview of subscription content, access via your institution.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

References

  1. 1.

    T.M. Pollock and S. Tin: Nickel-based superalloys for advanced turbine engines: chemistry, microstructure, and properties. J. Propul. Power 22, 361 (2006).

    CAS  Article  Google Scholar 

  2. 2.

    J. Yang, H. Jiang, Z. Yao, and J. Dong: Limitations of calculating stress relaxation limit by function-fitting of Inconel718 superalloy. Mater. Lett. 221, 89 (2018).

    CAS  Article  Google Scholar 

  3. 3.

    A.M. Beese, Z. Wang, A.D. Stoica, and D. Ma: Absence of dynamic strain aging in an additively manufactured nickel-base superalloy. Nat. Commun. 9, 1 (2018).

    CAS  Article  Google Scholar 

  4. 4.

    K.E. Yoon, R.D. Noebe, and D.N. Seidman: Effects of rhenium addition on the temporal evolution of the nanostructure and chemistry of a model Ni-Cr-Al superalloy. I: Experimental observations. Acta Mater. 55, 1145 (2007).

    CAS  Article  Google Scholar 

  5. 5.

    T.K. Tsao, A.C. Yeh, C.M. Kuo, K. Kakehi, H. Murakami, J.W. Yeh, and S. R. Jian: The high temperature tensile and creep behaviors of high entropy superalloy. Sci. Rep. 7, 1 (2017).

    Article  Google Scholar 

  6. 6.

    Y. Pan, L. Zhang, Z. Huang, and L. Jiang: Coarsening behavior of γ precipitates of single crystal Ni-based superalloys during long-term exposure. Mater. Lett. 241, 210 (2019).

    CAS  Article  Google Scholar 

  7. 7.

    K. Gopinath, A.K. Gogia, S.V. Kamat, R. Balamuralikrishnan, and U. Ramamurty: Tensile properties of Ni-based superalloy 720Li: temperature and strain rate effects. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 39, 2340 (2008).

    Article  Google Scholar 

  8. 8.

    M.D. Uchic, M.A. Groeber, D.M. Dimiduk, and J.P. Simmons: 3D micro-structural characterization of nickel superalloys via serial-sectioning using a dual beam FIB-SEM. Scr. Mater. 55, 23 (2006).

    CAS  Article  Google Scholar 

  9. 9.

    S. Zhao, X. Xie, G.D. Smith, and S.J. Patel: Gamma prime coarsening and age-hardening behaviors in a new nickel base superalloy. Mater. Lett. 58, 1784 (2004).

    CAS  Article  Google Scholar 

  10. 10.

    A.R.P. Singh, S. Nag, J.Y. Hwang, G.B. Viswanathan, J. Tiley, R. Srinivasan, H.L. Fraser, and R. Banerjee: Influence of cooling rate on the development of multiple generations of γ precipitates in a commercial nickel base superalloy. Mater. Charact. 62, 878 (2011).

    CAS  Article  Google Scholar 

  11. 11.

    J. Mao, K.-M. Chang, W. Yang, K. Ray, S.P. Vaze, and D.U. Ferrer: Cooling precipitation and strengthening study in powder metallurgy superalloy U720LI. Metall. Mater. Trans. A 32, 2441 (2001).

    Article  Google Scholar 

  12. 12.

    C.L. Qiu and P. Andrews: On the formation of irregular-shaped gamma prime and serrated grain boundaries in a nickel-based superalloy during continuous cooling. Mater. Charact. 76, 28 (2013).

    CAS  Article  Google Scholar 

  13. 13.

    Z. Zhong, Y. Gu, Y. Yuan, T. Yokokawa, and H. Harada: Mechanical properties and fracture modes of an advanced Ni–Co-base disk superalloy at elevated temperatures. Mater. Charact. 67, 101 (2012).

    CAS  Article  Google Scholar 

  14. 14.

    M. Nganbe and M. Heilmaier: High temperature strength and failure of the Ni-base superalloy PM 3030. Int. J. Plast. 25, 822 (2009).

    CAS  Article  Google Scholar 

  15. 15.

    T. Osada, N. Nagashima, Y. Gu, Y. Yuan, T. Yokokawa, and H. Harada: Factors contributing to the strength of a polycrystalline nickel–cobalt base superalloy. Scr. Mater. 64, 892 (2011).

    CAS  Article  Google Scholar 

  16. 16.

    L. Cui, H. Su, J. Yu, J. Liu, T. Jin, and X. Sun: Temperature dependence of tensile properties and deformation behaviors of nickel-base superalloy M951G. Mater. Sci. Eng. A 696, 323 (2017).

    CAS  Article  Google Scholar 

  17. 17.

    L. Zhang, D. Li, X. Qu, M. Qin, X. He, and Z. Li: Microstructure and tensile properties optimization of MIM418 superalloy by heat treatment. J. Mater. Process. Technol. 227, 71 (2016).

    CAS  Article  Google Scholar 

  18. 18.

    G. Garcés, P. Pérez, and P. Adeva: Effect of the extrusion texture on the mechanical behaviour of Mg–SiCp composites. Scr. Mater. 52, 615 (2005).

    Article  Google Scholar 

  19. 19.

    S. Kleiner and P.J. Uggowitzer: Mechanical anisotropy of extruded Mg–6% Al–1% Zn alloy. Mater. Sci. Eng. A 379, 258 (2004).

    Article  Google Scholar 

  20. 20.

    L. Kovarik, R.R. Unocic, J. Li, P. Sarosi, C. Shen, Y. Wang, and M.J. Mills: Microtwinning and other shearing mechanisms at intermediate temperatures in Ni-based superalloys. Prog. Mater. Sci. 54, 839 (2009).

    CAS  Article  Google Scholar 

  21. 21.

    G.B. Viswanathan, S. Karthikeyan, P.M. Sarosi, R.R. Unocic, and M.J. Mills: Microtwinning during intermediate temperature creep of polycrys-talline Ni-based superalloys: mechanisms and modelling. Philos. Mag. 86, 4823 (2006).

    CAS  Article  Google Scholar 

  22. 22.

    Bai Q. and Lin J.: Review and analysis of powder prior boundary (PPB) formation in powder metallurgy processes for nickel-based super alloys. J. Powder Metall. Min. 04, 1 (2015).

    Google Scholar 

  23. 23.

    C.S. Pande, M.A. Imam, and B.B. Rath: Study of annealing twins in FCC metals and alloys. Metall. Trans. A 21, 2891 (1990).

    Article  Google Scholar 

  24. 24.

    T. P. Gabb and D. R. Miller: Formation of Minor Phases in a Nickel-Based Disk Superalloy. NASA Natl. Tech. Inf. Serv. No. 217604, 1 July 2012.

    Google Scholar 

  25. 25.

    K. Matuszewski, A. Müller, N. Ritter, R. Rettig, K.J. Kurzydłowski, and R.F. Singer: On the thermodynamics and kinetics of TCP phase precipitation in Re- and Ru-containing Ni-base superalloys. Adv. Eng. Mater 17, 1127 (2015).

    CAS  Article  Google Scholar 

  26. 26.

    Y.J. Xu, K. Du, C.Y. Cui, and H.Q. Ye: Deformation twinning with zero macroscopic strain in a coarse-grained Ni–Co-based superalloy. Scr. Mater. 77, 71 (2014).

    Article  Google Scholar 

  27. 27.

    A. Chiba, X.G. Li, and M.S. Kim: High work-hardening rate and deformation twinning of Co-Ni-based superalloy at elevated temperatures. Philos. Mag. A 79, 1533 (1999).

    CAS  Article  Google Scholar 

  28. 28.

    Y. Yuan, Y. Gu, C. Cui, T. Osada, T. Yokokawa, and H. Harada: A novel strategy for the design of advanced engineering alloys—strengthening turbine disk superalloys via twinning structures. Adv. Eng. Mater. 13, 296 (2011).

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National High-Tech Research and Development Program of China (863 Program under agreement/grant no. 2012AA03A514). The authors are grateful to Dr. Yan Chong at Lawrence Berkeley National Laboratory for the fruitful discussion.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zaiwang Huang.

Supplementary materials

Supplementary materials

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2019.146.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Huang, Z. & Jiang, L. Anisotropic behavior of tensile properties in a hot-extruded polycrystalline nickel-base superalloy. MRS Communications 9, 1349–1354 (2019). https://doi.org/10.1557/mrc.2019.146

Download citation