Skip to main content

Non-distorted visible light-absorbing thiol-PEGylated gold-coated superparamagnetic iron oxide nanoparticles–porphyrin conjugates and their inhibitory effects against nosocomial pathogens

Abstract

A low-cost synthesis approach was developed for the fabrication of four symmetric meso-substituted water-soluble thiolated polyethylene glycol gold-coated superparamagnetic iron oxide nanoparticles–porphyrin (p-hydroxyphenyl [THPP], 3,5-dimethoxyphenyl [TdMPP], 3-pyr-idyl[T-3-PyP], and 1-methylpyridinium-3-yl[T3-Py+P4I-]) conjugates to achieve materials with enhanced absorption and therapeutic properties. After evaluation of their antibacterial inhibition characteristics against four nocosomial pathogens (Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Enterococcus faecalis), THPP and TdMPP conjugates showed some remarkable minimum inhibitory concentration values of 0.104 and 0.625 mg/mL against E. coli and E. faecalis, respectively, making these materials to be alternative agents for the inhibition of these pathogens in the environmental and clinical fields.

This is a preview of subscription content, access via your institution.

Figure 1.
Figure 2.
Figure 3.
Table I.

References

  1. 1.

    O. Penon, T. Patino, L. Barrios, C. Nogues, D.B. Amabilino, K. Wurst, and L. Perez-Garcia: A new porphyrin for the preparation of functionalized water-soluble gold nanoparticles with low intrinsic toxicity. ChemistryOpen 4, 127–136 (2015).

    CAS  Article  Google Scholar 

  2. 2.

    J.C. Barona-Castaño, C.C. Carmona-Vargas, T.J. Brocksom, and K.T. De Oliveira: Porphyrins as catalysts in scalable organic reactions. Molecules 21, 1–27 (2016).

    Article  Google Scholar 

  3. 3.

    R.R. Allison and K. Moghissi: Photodynamic therapy (PDT): PDT mechanisms. Clin. Endosc. 46, 24–29 (2013).

    Article  Google Scholar 

  4. 4.

    D.D. La, S.V. Bhosale, L.A. Jones, and S.V. Bhosale: Arginine-induced porphyrin-based self-assembled nanostructures for photocatalytic applications under simulated sunlight irradiation. Photochem. Photobiol. Sci. 16, 151–154 (2017).

    CAS  Article  Google Scholar 

  5. 5.

    R. Paolesse, S. Nardis, D. Monti, M. Stefanelli, and C. Di Natale: Porphyrinoids for chemical sensor applications. Chem. Rev. 117, 2517–2583 (2017).

    CAS  Article  Google Scholar 

  6. 6.

    B. Gao, Y. Liu, H. Yin, Y. Li, Q. Bai, and L. Zhang: Water-soluble dendritic polyaspartic porphyrins: potential photosensitizers for photodynamic therapy. New J. Chem. 36, 28–31 (2012).

    CAS  Article  Google Scholar 

  7. 7.

    K. Winkler, C. Simon, M. Finke, K. Bleses, M. Birke, N. Szentmáry, D. Hüttenberger, T. Eppig, T. Stachon, A. Langenbucher, H.-J. Foth, M. Herrmann, B. Seitz, and M. Bischoff: Photodynamic inactivation of multidrug-resistant Staphylococcus aureus by chlorin e6 and red light (λ = 670 nm). J. Photochem. Photobiol. B Biol. 162, 340–347 (2016).

    CAS  Article  Google Scholar 

  8. 8.

    Z. Li, C. Wang, L. Cheng, H. Gong, S. Yin, Q. Gong, Y. Li, and Z. Liu: PEG-functionalized iron oxide nanoclusters loaded with chlorin e6 for targeted, NIR light induced, photodynamic therapy. Biomaterials 34, 9160–9170 (2013).

    CAS  Article  Google Scholar 

  9. 9.

    Q.Q. Dou, C.P. Teng, E. Ye, and X.J. Loh: Effective near-infrared photody-namic therapy assisted by upconversion nanoparticles conjugated with photosensitizers. Int. J. Nanomed. 10, 419–432 (2015).

    Article  Google Scholar 

  10. 10.

    O.J. Fakayode, C.A. Kruger, S.P. Songca, H. Abrahamse, and O.S. Oluwafemi: Photodynamic therapy evaluation of methoxypolyethyleneglycol-thiol-SPIONs-gold-meso-tetrakis(4-hydroxyphenyl)porphyrin conjugate against breast cancer cells. Mater. Sci. Eng. C 92, 737–744 (2018).

    CAS  Article  Google Scholar 

  11. 11.

    A.B. Ormond and H.S. Freeman: Dye sensitizers for photodynamic therapy. Materials 6, 817–840 (2013).

    CAS  Article  Google Scholar 

  12. 12.

    O.J. Fakayode, N. Tsolekile, S.P. Songca, and O.S. Oluwafemi: Applications of functionalized nanomaterials in photodynamic therapy. Biophys. Rev. 10, 49–67 (2018).

    CAS  Article  Google Scholar 

  13. 13.

    F. Zhou, D. Xing, Z. Ou, B. Wu, D.E. Resasco, and W.R. Chen: Cancer photothermal therapy in the near-infrared region by using single-walled carbon nanotubes. J. Biomed. Opt. 14, 1–7 (2009).

    Google Scholar 

  14. 14.

    L. Vieira, M.L. Castilho, I. Ferreira, J. Ferreira-Strixino, K.C. Hewitt, and L. Raniero: Synthesis and characterization of gold nanostructured Chorin e6 for Photodynamic Therapy. Photodiagnosis Photodyn. Ther. 18, 6–11 (2017).

    CAS  Article  Google Scholar 

  15. 15.

    J.R. Mccarthy, J. Bhaumik, N. Merbouh, and R. Weissleder: High-yielding syntheses of hydrophilic conjugatable chlorins and bacteriochlorins. Org. Biomol. Chem. 7, 3430–3436 (2009).

    CAS  Article  Google Scholar 

  16. 16.

    K. Aravindu, O. Mass, P. Vairaprakash, J.W. Springer, E. Yang, D.M. Niedzwiedzki, C. Kirmaier, D.F. Bocian, D. Holten, and J.S. Lindsey: Amphiphilic chlorins and bacteriochlorins in micellar environments. Molecular design, de novo synthesis, and photophysical properties. Chem. Sci. 4, 3459–3477 (2013).

    CAS  Article  Google Scholar 

  17. 17.

    A.Z. Muresan and J.S. Lindsey: Design and synthesis of water-soluble bioconjugatable trans-AB-porphyrins. Tetrahedron 64, 11440–11448 (2008).

    CAS  Article  Google Scholar 

  18. 18.

    Y.F. Huan, Q. Fei, H.Y. Shan, B.J. Wang, H. Xu, and G.D. Feng: A novel water-soluble sulfonated porphyrin fluorescence sensor for sensitive assays of H2O2 and glucose. Analyst 140, 165–1661 (2015).

    Article  Google Scholar 

  19. 19.

    O.J. Fakayode, S.P. Songca, and O.S. Oluwafemi: Neutral red separation property of ultrasmall-gluconic acid capped superparamagnetic iron oxide nanoclusters coprecipitated with goethite and hematite. Sep. Purif. Technol. 192, 47–482 (2018).

    Article  Google Scholar 

  20. 20.

    M. Tintoré, S. Mazzini, L. Polito, M. Marelli, A. Latorre, Á Somoza, A. Aviñó, C. Fàbrega, and R. Eritja: Gold-coated superparamagnetic nano-particles for single methyl discrimination in DNA aptamers. Int. J. Mol. Sci. 16, 2762–27639 (2015).

    Article  Google Scholar 

  21. 21.

    F. Mohammad, G. Balaji, A. Weber, R.M. Uppu, and C.S.S.R. Kumar: Influence of gold nanoshell on hyperthermia of super paramagnetic iron oxide nanoparticles (SPIONs). J. Phys. Chem. C 114, 19194–19201 (2010).

    CAS  Article  Google Scholar 

  22. 22.

    M. Anbarasu, M. Anandan, E. Chinnasamy, V. Gopinath, and K. Balamurugan: Synthesis and characterization of polyethylene glycol (PEG) coated Fe3O4 nanoparticles by chemical co-precipitation method for biomedical applications. Spectrochim. Acta A Mol. Biomol. Spectrosc. 135, 536–539 (2015).

    CAS  Article  Google Scholar 

  23. 23.

    A.H. Silva, E. Lima, M.V. Mansilla, R.D. Zysler, H. Troiani, M.L.M. Pisciotti, C. Locatelli, J.C. Benech, N. Oddone, V.C. Zoldan, E. Winter, A.A. Pasa, and T.B. Creczynski-Pasa: Superparamagnetic iron-oxide nanoparticles mPEG350- and mPEG2000-coated: cell uptake and bio-compatibility evaluation. Nanomed. Nanotechnol. Biol. Med. 12, 909–919 (2016).

    CAS  Article  Google Scholar 

  24. 24.

    P.R. Murray, K.S. Rosenthal, and M.A. Pfaller: Medical Microbiology, 5th ed. (Elsevier, Philadelphia, PA, USA, 2005), pp. 106–348.

    Google Scholar 

  25. 25.

    H.A. Khan, A. Ahmad, and R. Mehboob: Nosocomial infections and their control strategies. Asian Pac. J. Trop. Biomed. 5, 509–514 (2015).

    Article  Google Scholar 

  26. 26.

    J.N. Eloff: A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Med. 64, 711–713 (1998).

    CAS  Article  Google Scholar 

  27. 27.

    Y.P. He, Y.M. Miao, C.R. Li, S.Q. Wang, L. Cao, S.S. Xie, G.Z. Yang, B.S. Zou, and C. Burda: Size and structure effect on optical transitions of iron oxide nanocrystals. Phys. Rev. B 71, 1–9 (2005).

    Google Scholar 

  28. 28.

    S. Krishnamurthy, A. Esterle, N.C. Sharma, and S.V. Sahi: Yucca-derived synthesis of gold nanomaterial and their catalytic potential. Nanoscale Res. Lett. 9, 1–9 (2014).

    CAS  Article  Google Scholar 

  29. 29.

    W. Wu, Q. He, and C. Jiang: Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res. Lett. 3, 397–415 (2008).

    CAS  Article  Google Scholar 

  30. 30.

    Q. Sun, B.V. Reddy, M. Marquez, P. Jena, C. Gonzalez, and Q. Wang: Theoretical study on gold-coated iron oxide nanostructure: magnetism and bioselectivity for amino acids. J. Phys. Chem. C. 111, 4159–4163 (2007).

    CAS  Article  Google Scholar 

  31. 31.

    Y. Xue, X. Li, H. Li, and W. Zhang: Quantifying thiol-gold interactions towards the efficient strength control. Nat. Commun. 5, 1–9 (2014).

    Google Scholar 

  32. 32.

    S. Honary and F. Zahir: Effect of zeta potential on the properties of nano-drug delivery systems - a review (Part 1). Trop. J. Pharm. Res. 12, 255–264 (2013).

    Google Scholar 

  33. 33.

    V. Hirsch, C. Kinnear, M. Moniatte, B. Rothen-Rutishauser, M.J.D. Clift, and A. Fink: Surface charge of polymer coated SPIONs influences the serum protein adsorption, colloidal stability and subsequent cell interaction in vitro. Nanoscale 5, 3723–3732 (2013).

    CAS  Article  Google Scholar 

  34. 34.

    W. Ahmed, R. Neller, and M. Katouli: Host species-specific metabolic fingerprint database for enterococci and Escherichia coli and its application to identify sources of fecal contamination in surface waters. Appl. Environ. Microbiol. 71, 4461–4468 (2005).

    CAS  Article  Google Scholar 

  35. 35.

    M.N. Byappanahalli, M.B. Nevers, A. Korajkic, Z.R. Staley, and V.J. Harwood: Enterococci in the environment. Microbiol. Mol. Biol. Rev. 76, 68–706 (2012).

    Article  Google Scholar 

  36. 36.

    S.C. Edberg, E.W. Rice, R.J. Karlin, and M.J. Allen: Escherichia coli: the best biological drinking water indicator for public health protection. J. Appl. Microbiol. 88, 106–116 (2000).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the National Research Foundation (NRF), South Africa, under the Nanotechnology Flagship Programme (Grant no. 97983), and the Collaborative Postgraduate Training Grant (Grant no. 105262) for financial support. B.M.A.-T. appreciates Niger Delta University, Wilberforce Island, Bayelsa State, Nigeria, for granting him study leave to accomplish this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Oluwatobi S. Oluwafemi.

Supplementary materials

Supplementary materials

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2019.141.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Amos-Tautua, B.M., Fakayode, O.J., van Vuuren, S. et al. Non-distorted visible light-absorbing thiol-PEGylated gold-coated superparamagnetic iron oxide nanoparticles–porphyrin conjugates and their inhibitory effects against nosocomial pathogens. MRS Communications 9, 1335–1342 (2019). https://doi.org/10.1557/mrc.2019.141

Download citation