Skip to main content

Non-invasive oral cancer detection from saliva using zinc oxide—reduced graphene oxide nanocomposite based bioelectrode

Abstract

Multifunctional materials with excellent biocompatibility and electron-transport properties are critical for the pursuit of point-of-care biosens-ing devices. The authors report the synthesis of zinc oxide–reduced graphene oxide (ZnO–rGO) nanocomposite for the fabrication of an electrochemical immunosensing test-bed for noninvasive onsite detection of oral cancer biomarker (interleukin-8, IL8). The immunosensor showed successful detection of IL8 at low concentration ranges, i.e., 100 fg/mL–5 ng/mL with a sensitivity of 12.46 ± 0.82 µA mL/ng and a detection limit of 51.53 ± 0.43 pg/mL. These results have been validated through in vitro investigations using real saliva samples spiked with IL8.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. 1.

    R.L. Siegel, K.D. Miller, and A. Jemal: Cancer statistics, 2018. CA Cancer J. Clin. 68, 7–30 (2018).

    Article  Google Scholar 

  2. 2.

    S.V. Krishna Rao, G. Mejia, K. Roberts-Thomson, and R. Logan: Epidemiology of oral cancer in Asia in the past decade–an update (2000–2012). Asian. Pac. J. Cancer Prev. 14, 5567–5577 (2013).

    Article  Google Scholar 

  3. 3.

    C. Rivera: Essentials of oral cancer. Int. J. Clin. Exp. Pathol. 8, 11884–11894 (2015).

    CAS  Google Scholar 

  4. 4.

    R. Mehrotra and D.K. Gupta: Exciting new advances in oral cancer diagnosis: avenues to early detection. Head Neck Oncol. 3, 33 (2011).

    Article  Google Scholar 

  5. 5.

    S.B. Nimse, M.D. Sonawane, K.-S. Song, and T. Kim: Biomarker detection technologies and future directions. Analyst 141, 740–755 (2016).

    CAS  Article  Google Scholar 

  6. 6.

    B.V. Chikkaveeraiah, A.A. Bhirde, N.Y. Morgan, H.S. Eden, and X. Chen: Electrochemical immunosensors for detection of cancer protein biomark-ers. ACS Nano 6, 6546–6561 (2012).

    CAS  Article  Google Scholar 

  7. 7.

    H. Watanabe, M. Iwase, M. Ohashi, and M. Nagumo: Role of interleukin-8 secreted from human oral squamous cell carcinoma cell lines. Oral Oncol. 38, 670–679 (2002).

    CAS  Article  Google Scholar 

  8. 8.

    M.A. St. John, Y. Li, X. Zhou, P. Denny, C.M. Ho, C.D. Montemagno, W. Shi, F. Qi, B. Wu, U. Shinha, R. Jordan, L. Wolinsky, N.H. Park, H. Liu, E. Abemayor, and D.T.W. Wong: Interleukin 6 and interleukin 8 as potential biomarkers for oral cavity and oropharyngeal squamous cell carcinoma. Arch. Otolaryngol. Head Neck Surg. 130, 929–935 (2004).

    Article  Google Scholar 

  9. 9.

    U. Anik and S. Timur: Towards the electrochemical diagnosis of cancer: nanomaterial-based immunosensors and cytosensors. RSC Adv. 6, 111831–111841 (2016).

    CAS  Article  Google Scholar 

  10. 10.

    J.F. Rusling, G. Sotzing, and F. Papadimitrakopoulos: Designing nanomaterials-enhanced electrochemical immunosensors for cancer bio-marker proteins. Bioelectrochem. 76, 189–194 (2009).

    CAS  Article  Google Scholar 

  11. 11.

    L. Wang, Q. Xiong, F. Xiao, and H. Duan: 2D nanomaterials based electrochemical biosensors of cancer diagnosis. Biosens. Bioelectron. 89, 136–151 (2017).

    CAS  Article  Google Scholar 

  12. 12.

    S. Verma, A. Singh, A. Shukla, J. Kaswan, K. Arora, J. Ramirez-Vick, P. Singh, and S.P. Singh: Anti-IL8/AuNPs-rGO/ITO as an immunosensing platform for noninvasive electrochemical detection of oral cancer. ACS Appl. Mater. Interfaces 9, 27462–27474 (2017).

    CAS  Article  Google Scholar 

  13. 13.

    N. Pachauri, K. Dave, A. Dinda, and P.R. Solanki: Cubic CeO2 implanted reduced graphene oxide-based highly sensitive biosensor for non-invasive oral cancer biomarker detection. J. Mater. Chem. B 6, 3000–3012 (2018).

    CAS  Article  Google Scholar 

  14. 14.

    S.K. Arya, S. Saha, J.E. Ramirez-Vick, V. Gupta, S. Bhansali, and S.P. Singh: Recent advances in ZnO nanostructures and thin films for biosensor applications: review. Anal. Chim. Acta 737, 1–21 (2012).

    CAS  Article  Google Scholar 

  15. 15.

    L.J. Cote, F. Kim, and J. Huang: Langmuir-Blodgett assembly of graphite oxide single layers. J. Am. Chem. Soc. 131, 1043–1049 (2009).

    CAS  Article  Google Scholar 

  16. 16.

    L. Spanhel and M.A. Anderson: Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated ZnO colloids. J. Am. Chem. Soc. 113, 2826–2833 (1991).

    CAS  Article  Google Scholar 

  17. 17.

    Y.-L. Chen, Z.-A. Hu, Y.-Q. Chang, H.-W. Wang, Z.-Y. Zhang, Y.-Y. Yang, and H.-Y. Wu: Zinc oxide/reduced graphene oxide composites and electrochemical capacitance enhanced by homogeneous incorporation of reduced graphene oxide sheets in zinc oxide matrix. J. Phys. Chem. C 115, 2563–2571 (2011).

    CAS  Article  Google Scholar 

  18. 18.

    H.N. Tien, V.H. Luan, L.T. Hoa, N.T. Khoa, S.H. Hahn, J.S. Chung, E.W. Shin, and S.H. Hur: One pot-synthesis of reduced graphene oxide-zinc oxide sphere composites and its use as a visible light photocatalyst. Chem. Eng. J. 229, 126–133 (2013).

    CAS  Article  Google Scholar 

  19. 19.

    J. Wang, T. Tsuzuki, B. Tang, X. Hou, L. Sun, and X. Wang: Reduced graphene oxide/zinc oxide composite: reusable adsorbent for pollutant management. ACS Appl. Mater. Interfaces 4, 3084–3090 (2012).

    CAS  Article  Google Scholar 

  20. 20.

    M.K. Debanath and S. Karmarkar: Study of blueshift of optical band gap in zinc oxide (ZnO) nanoparticles prepared by low-temperature wet chemical method. Mater. Lett. 15, 116–117 (2013).

    Article  Google Scholar 

  21. 21.

    J. Wang: Analytical Electrochemistry, Vol. 272, 3rd ed. (John Wiley and Sons, New Jersey, 2006).

    Book  Google Scholar 

  22. 22.

    A.J. Bard and L.R. Faulkner: Electrochemical Methods Fundamentals and Applications, 2nd ed. (John Wiley and Sons, Inc., USA, 2001).

    Google Scholar 

  23. 23.

    S. Verma, J. Choudhary, K.P. Singh, P. Chandra, and S.P. Singh: Uricase grafted nanoconducting matrix based electrochemical biosensor for ultra-fast uric acid detection in human serum samples. Int. J. Biol. Macromol. 130, 333–341 (2019).

    CAS  Article  Google Scholar 

  24. 24.

    S. Jain, S. Verma, S.P. Singh, and S.N. Sharma: An electrochemical biosensor based on novel butylamine capped CZTS nanoparticles immobilized by uricase for uric acid detection. Biosens. Bioelectron. 127, 13–141 (2019).

    Article  Google Scholar 

Download references

Acknowledgments

The authors duly acknowledge support from the Director, CSIR-NPL and CSIR-Network project BSC0112. S.V. is grateful for the funding provided by CSIR (31/01/(0510)/2018-EMR-1) India.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Surinder P. Singh.

Supplementary material

Supplementary material

The supplementary material for this article can be found at u]https://doi.org/10.1557/mrc.2019.138.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Verma, S., Singh, S.P. Non-invasive oral cancer detection from saliva using zinc oxide—reduced graphene oxide nanocomposite based bioelectrode. MRS Communications 9, 1227–1234 (2019). https://doi.org/10.1557/mrc.2019.138

Download citation