Skip to main content

Dual light-emitting Yb3+,Er3+-doped La(IO3)3 iodate nanocrystals: up-conversion and second harmonic generation


The authors report the microwave-assisted hydrothermal synthesis of α-La(IO3)3 nanocrystals doped with Yb3+ and Er3+ ions, along with their structural and optical characterizations. 50-nm-sized α-La0.9-xYb0.1Erx(IO3)3 nanocrystals with x = 0.005, 0.01, and 0.02 were synthesized and dispersed in ethylene glycol. The as-obtained suspensions exhibit both second harmonic generation (SHG) signal and up-conversion photoluminescence (UC-PL) without interplay between the two signals under near-infrared resonant excitation. The relative intensity of SHG and UC-PL emission can be modulated according to the excitation wavelength. The most intense UC-PL signal is obtained from a 980-nm excitation, thanks to the sensitization of Er3+ by Yb3+.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4


  1. 1.

    K. Wang, X. He, X. Yang, and H. Shi: Functionalized silica nanoparticles: a platform for fluorescence imaging at the cell and small animal levels. Acc. Chem. Res. 46, 1367 (2013).

    CAS  Article  Google Scholar 

  2. 2.

    C. Bouzigues, T. Gacoin, and A. Alexandrou: Biological applications of rare-earth based nanoparticles. ACS Nano 5, 8488 (2011).

    CAS  Article  Google Scholar 

  3. 3.

    O. Faklaris, D. Garrot, V. Joshi, F. Druon, J.P. Boudou, T. Sauvage, P. Georges, P.A. Curmi, and F. Treussart: Detection of single photolumines-cent diamond nanoparticles in cells and study of the internalization pathway. Small 4, 2236 (2008).

    CAS  Article  Google Scholar 

  4. 4.

    O.S. Wolfbeis: An overview of nanoparticles commonly used in fluorescent bioimaging. Chem. Soc. Rev. 44, 4743 (2015).

    CAS  Article  Google Scholar 

  5. 5.

    S. Gigan: Optical microscopy aims deep. Nat. Photonics 11, 14 (2017).

    CAS  Article  Google Scholar 

  6. 6.

    G. Dantelle, M. Matulionyte, D. Testemale, A. Cantarano, A. Ibanez, and F. Vetrone: Nd3+-doped Gd3Sc2Al3O12 nanocrystals: towards efficient nanoprobes for temperature sensing. Phys. Chem. Chem. Phys. 21, 11132 (2019).

    CAS  Article  Google Scholar 

  7. 7.

    B. del Rosal, U. Rocha, E.C. Ximendes, E. Martín Rodríguez, D. Jaque, and J. García Sol: Nd3+ ions in nanomedicine: perspectives and applications. Opt. Mater. 63, 185 (2017).

    Article  Google Scholar 

  8. 8.

    R. Wang, X. Li, L. Zhou, and F. Zhang: Epitaxial seeded growth of rare-earth nanocrystals with efficient 800 nm near-infrared to 1525 nm short-wavelength infrared downconversion photoluminescence for in vivo bioimaging. Angew. Chem. Int. Ed. 53, 12086 (2014).

    CAS  Article  Google Scholar 

  9. 9.

    M. Tan, B. del Rosal, Y. Zhang, E. Martín Rodríguez, J. Hu, Z. Zhou, R. Fan, D.H. Ortgies, N. Fernández, I. Chaves-Coira, Á Núñez, D. Jaque, and G. Chen: Rare-earth-doped fluoride nanoparticles with engineered long luminescence lifetime for time-gated in vivo optical imaging in the second biological window. Nanoscale 10, 17771 (2018).

    CAS  Article  Google Scholar 

  10. 10.

    S. Chinnathambi and N. Shirahata: Recent advances on fluorescent bio-markers of near-infrared quantum dots for in vitro and in vivo imaging. Sci. Technol. Adv. Mater. 20, 337 (2019).

    CAS  Article  Google Scholar 

  11. 11.

    L. Mayer, G. Dantelle, V. Jacques, S. Perruchas, G. Patriarche, J.F. Roch, and T. Gacoin: Dual light emitting nanoparticles: second harmonic generation combined with rare-earth photoluminescence. J. Mater. Chem. C 2, 7681 (2014).

    CAS  Article  Google Scholar 

  12. 12.

    P. Pantazis, J. Maloney, D. Wu, and S.E. Fraser: Second harmonic generating (SHG) nanoprobes for in vivo imaging. PNAS 107, 14535 (2010).

    CAS  Article  Google Scholar 

  13. 13.

    D. Staedler, T. Magouroux, R. Hadji, C. Joulaud, J. Extermann, S. Schwung, S. Passemard, C. Kasparian, G. Clarke, M. Gerrmann, R. Le Dantec, Y. Mugnier, D. Rytz, D. Ciepielewski, C. Galez, S. Gerber-Lemaire, L. Juillerat-Jeanneret, L. Bonacina, and J.-P. Wolf: Harmonic Nanocrystals for biolabeling: a survey of optical properties and biocompatibility. ACS Nano 63, 2542 (2012).

    Article  Google Scholar 

  14. 14.

    L. Dubreil, I. Leroux, M. Ledevin, C. Schleder, L. Lagalice, C. Lovo, R. Fleurisson, S. Passemard, V. Kilin, S. Gerber-Lemaire, M.-A. Colle, L. Bonacina, and K. Rouger: Multi-harmonic imaging in the second near-infrared window of nanoparticle-labeled stem cells as a monitoring tool in tissue depth. ACS Nano 117, 6672 (2017).

    Article  Google Scholar 

  15. 15.

    E. Slenders, H. Bove, M. Urbain, Y. Mugnier, A. Yasin Sonay, P. Pantazis, L. Bonacina, P. Vanden Berghe, M. vandeVen, and M. Ameloot: Image correlation spectroscopy with second harmonic generating nanoparticles in suspension and in cells. J. Phys. Chem. Lett. 9, 6112 (2018).

    CAS  Article  Google Scholar 

  16. 16.

    X.L. Le, C. Zhou, A. Slablab, D. Chauvat, C. Tard, S. Perruchas, T. Gacoin, P. Villeval, and J.F. Roch: Photostable second-harmonic generation from a single KTiOPO4 nanocrystal for nonlinear microscopy. Small 4, 1332 (2008).

    Article  Google Scholar 

  17. 17.

    K.M. Ok and P.S. Halasyamani: New metal iodates: syntheses, structures, and characterizations of noncentrosymmetric La(IO3)3 and NaYI4O12 and centrosymmetric β-Cs2I4O11 and Rb2I6O15(OH)2•H2O. Inorg. Chem. 44, 9353 (2005).

    CAS  Article  Google Scholar 

  18. 18.

    M.B. Taouti, Y. Suffren, O. Leynaud, D. Benbertal, A. Brenier, and I. Gautier-Luneau: Structures, thermal behaviors, and luminescent properties of anhydrous lanthanum iodate polymorphs. Inorg. Chem. 54, 3608 (2015).

    CAS  Article  Google Scholar 

  19. 19.

    S. Regny, J. Riporto, Y. Mugnier, R. Le Dantec, S. Kodjikian, S. Pairis, I. Gautier-Luneau, and G. Dantelle: Microwave synthesis and up-conversion properties of SHG-active α-(La,Er)(IO3)3 Nanocrystals. Inorg. Chem. 58, 1647 (2019).

    CAS  Article  Google Scholar 

  20. 20.

    C. Joulaud, Y. Mugnier, G. Djanta, M. Dubled, J.C. Marty, C. Galez, J.P. Wolf, L. Bonacina, and R. Le Dantec: Characterization of the nonlinear optical properties of nanocrystals by hyper Rayleigh scattering. J. Nanobiotechnol. 11, S8 (2013).

    Article  Google Scholar 

  21. 21.

    J. Riporto, M. Urbain, Y. Mugnier, V. Multian, F. Riporto, K. Bredillet, S. Beauquis, C. Galez, V. Monnier, Y. Chevolot, V. Gayvoronsky, L. Bonacina, and R. Le Dantec: Second harmonic spectroscopy of ZnO, BiFeO3 and LiNbO3 nanocrystals. Opt. Mater. Express 9, 1955 (2019).

    CAS  Article  Google Scholar 

  22. 22.

    Y. Suffren, O. Leynaud, P. Plaindoux, A. Brenier, and I. Gautier-Luneau: Differences and similarities between lanthanum and rare-earth iodate anhydrous polymorphs: structures, thermal behaviors, and luminescent properties. Inorg. Chem. 55, 11264 (2016).

    CAS  Article  Google Scholar 

  23. 23.

    G.H. Dieke: Spectra and Energy Levels of Rare Earth Ions in Crystals (Interscience Publishers, New York, NY, USA, 1968).

    Google Scholar 

  24. 24.

    P.S. Peijzela, A. Meijerink, R.T. Wegh, M.F. Reid, and G.W. Burdick: A complete 4f n energy level diagram for all trivalent lanthanide ions. J. Solid State Chem. 178, 448 (2005).

    Article  Google Scholar 

  25. 25.

    M. Pollnau, D.R. Gamelin, S.R. Lüthi, H.U. Güdel, and M.P. Hehlen: Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems. Phys. Rev. B 61, 3337 (2000).

    CAS  Article  Google Scholar 

  26. 26.

    J.F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H.U. Güdel: Anomalous power dependence of sensitized upconversion luminescence. Phys. Rev. B 71, 125123 (2005).

    Article  Google Scholar 

  27. 27.

    G. Blasse and B.C. Grabmaier: Luminescent Materials (Springer-Verlag, Berlin Heidelberg, 1994).

    Book  Google Scholar 

  28. 28.

    F. Huang, X. Liu, Y. Ma, S. Kang, L. Hu, and D. Chena: Origin of near to middle infrared luminescence and energy transfer process of Er3+/Yb3+ co-doped fluorotellurite glasses under different excitations. Sci. Rep. 5, 8233 (2015).

    CAS  Article  Google Scholar 

  29. 29.

    H. Dong, L.D. Sun, and C.H. Yan: Energy transfer in lanthanide upconvert-ing studies for extended optical applications. Chem. Soc. Rev. 44, 1608 (2015).

    CAS  Article  Google Scholar 

  30. 30.

    H.-Y. Chang, S.-H. Kim, P.S. Halasyamani, and K.M. Ok: Alignment of lone pairs in a new polar material: synthesis, characterization, and functional properties of Li2Ti(IO3)6. J. Am. Chem. Soc. 131, 2426 (2009).

    CAS  Article  Google Scholar 

  31. 31.

    C.F. Sun, C.L. Hua, and J.G. Mao: PbPt(IO3)6(H2O): a new polar material with two types of stereoactive lone-pairs and a very large SHG response. Chem. Commun. 48, 4220 (2012).

    CAS  Article  Google Scholar 

Download references


The authors thank the French-Swiss Interreg V and French ANR programs for financial supports (Projects OncoNanoscreen and Racine) and the 2015–2020 French Contrat Plan État Région (project E-TIME, SYMME).

Author information



Corresponding author

Correspondence to Géraldine Dantelle.

Supplementary material

Supplementary material

The supplementary material for this article can be found at u]

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Regny, S., Bredillet, K., Riporto, J. et al. Dual light-emitting Yb3+,Er3+-doped La(IO3)3 iodate nanocrystals: up-conversion and second harmonic generation. MRS Communications 9, 1221–1226 (2019).

Download citation