Skip to main content

Scalable laser powder bed fusion processing of nitinol shape memory alloy


The authors report on pulsed laser powder bed fusion fabrication of nitinol (NiTi) shape memory materials. The authors first performed single-track laser parameter sweeps to assess melt pool stability and determine energy parameters and hatch spacing for larger builds. The authors then assessed the melt pool chemistry as a function of laser energy density and build plate composition. Brittle intermetallics were found to form at the part/build plate interface for both N200 and Ti-6-4 substrates. The intermetallic formation was reduced by building on a 50Ni–50Ti substrate, but delamination still occurred due to thermal stresses upon cooling. The authors were able to overcome delamination on all substrates and fabricate macroscopic parts by building a lattice support structure, which is both compliant and controls heat transfer into the build plate. This approach will enable scalable fabrication of complex NiTi parts.

This is a preview of subscription content, access via your institution.

Figure 1.
Figure 2.
Figure 3.
Figure 4.


  1. 1.

    M. Elahinia, N. Shayesteh Moghaddam, M. Taheri Andani, A. Amerinatanzi, B.A. Bimber, and R.F. Hamilton: Fabrication of NiTi through additive manufacturing: a review. Prog. Mater. Sci. 83, 630 (2016).

    CAS  Article  Google Scholar 

  2. 2.

    Z. Khoo, Y. Liu, J. An, C. Chua, Y. Shen, and C. Kuo: A review of selective laser melted NiTi shape memory alloy. Materials (Basel). 11, 519 (2018).

    Article  Google Scholar 

  3. 3.

    B.E. Franco, J. Ma, B. Loveall, G.A. Tapia, K. Karayagiz, J. Liu, A. Elwany, R. Arroyave, and I. Karaman: A sensory material approach for reducing variability in additively manufactured metal parts. Sci. Rep. 7, 3604 (2017).

    CAS  Article  Google Scholar 

  4. 4.

    J. Ma, B. Franco, G. Tapia, K. Karayagiz, L. Johnson, J. Liu, R. Arroyave, I. Karaman, and A. Elwany: Spatial control of functional response in 4D-printed active metallic structures. Sci. Rep. 7, 46707 (2017).

    Article  Google Scholar 

  5. 5.

    P.K. Kumar and D.C. Lagoudas: Shape Memory Alloys (Springer US, Boston, MA, USA, 2008), pp. 1–15.

    Book  Google Scholar 

  6. 6.

    S. Dadbakhsh, M. Speirs, J. Van Humbeeck, and J.-P. Kruth: Laser additive manufacturing of bulk and porous shape-memory NiTi alloys: from processes to potential biomedical applications. MRS Bull. 41, 765 (2016).

    CAS  Article  Google Scholar 

  7. 7.

    R.F. Hamilton, T.A. Palmer, and B.A. Bimber: Spatial characterization of the thermal-induced phase transformation throughout as-deposited additive manufactured NiTi bulk builds. Scr. Mater. 101, 56 (2015).

    CAS  Article  Google Scholar 

  8. 8.

    S. Dadbakhsh, M. Speirs, J.-P. Kruth, J. Schrooten, J. Luyten, and J. Van Humbeeck: Effect of SLM parameters on transformation temperatures of shape memory nickel titanium parts. Adv. Eng. Mater. 16, 1140 (2014).

    CAS  Article  Google Scholar 

  9. 9.

    M. Mahmoudi, G. Tapia, B. Franco, J. Ma, R. Arroyave, I. Karaman, and A. Elwany: On the printability and transformation behavior of nickel-titanium shape memory alloys fabricated using laser powder-bed fusion additive manufacturing. J. Manuf. Process. 35, 672 (2018).

    Article  Google Scholar 

  10. 10.

    R.F. Hamilton, B.A. Bimber, M. Taheri Andani, and M. Elahinia: Multi-scale shape memory effect recovery in NiTi alloys additive manufactured by selective laser melting and laser directed energy deposition. J. Mater. Process. Technol. 250, 55 (2017).

    CAS  Article  Google Scholar 

  11. 11.

    S. Saedi, A.S. Turabi, M.T. Andani, N.S. Moghaddam, M. Elahinia, and H. E. Karaca: Texture, aging, and superelasticity of selective laser melting fabricated Ni-rich NiTi alloys. Mater. Sci. Eng. A 686, 1 (2017).

    CAS  Article  Google Scholar 

  12. 12.

    M. Elahinia, N. Shayesteh Moghaddam, A. Amerinatanzi, S. Saedi, G.P. Toker, H. Karaca, G.S. Bigelow, and O. Benafan: Additive manufacturing of NiTiHf high temperature shape memory alloy. Scr. Mater. 145, 90 (2018).

    CAS  Article  Google Scholar 

  13. 13.

    T. Bormann, R. Schumacher, B. Müller, M. Mertmann, and M. de Wild: Tailoring selective laser melting process parameters for NiTi implants. J. Mater. Eng. Perform. 21, 2519 (2012).

    CAS  Article  Google Scholar 

  14. 14.

    B.H. Jared, M.A. Aguilo, L.L. Beghini, B.L. Boyce, B.W. Clark, A. Cook, B. J. Kaehr, and J. Robbins: Additive manufacturing: toward holistic design. Scr. Mater. 135, 141 (2017).

    CAS  Article  Google Scholar 

  15. 15.

    L.E.J. Thomas-Seale, J.C. Kirkman-Brown, M.M. Attallah, D.M. Espino, and D.E.T. Shepherd: The barriers to the progression of additive manufacture: perspectives from UK industry. Int. J. Prod. Econ. 198, 104 (2018).

    Article  Google Scholar 

  16. 16.

    T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, and W. Zhang: Additive manufacturing of metallic components–process, structure and properties. Prog. Mater. Sci. 92, 112 (2018).

    CAS  Article  Google Scholar 

  17. 17.

    L. Thijs, F. Verhaeghe, T. Craeghs, J. Van Humbeeck, and J.-P. Kruth: A study of the microstructural evolution during selective laser melting of Ti–6Al–4 V. Acta Mater. 58, 3303 (2010).

    CAS  Article  Google Scholar 

  18. 18.

    M.J. Matthews, G. Guss, S.A. Khairallah, A.M. Rubenchik, P.J. Depond, and W.E. King: Denudation of metal powder layers in laser powder bed fusion processes. Acta Mater. 114, 33 (2016).

    CAS  Article  Google Scholar 

  19. 19.

    S.A. Khairallah, A.T. Anderson, A. Rubenchik, and W.E. King: Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater. 108, 36 (2016).

    CAS  Article  Google Scholar 

  20. 20.

    W. King, A.T. Anderson, R.M. Ferencz, N.E. Hodge, C. Kamath, and S.A. Khairallah: Overview of modelling and simulation of metal powder bed fusion process at Lawrence Livermore National Laboratory. Mater. Sci. Technol. 31, 957 (2015).

    CAS  Article  Google Scholar 

  21. 21.

    A.H. Nickel, D.M. Barnett, and F.B. Prinz: Thermal stresses and deposition patterns in layered manufacturing. Mater. Sci. Eng. A 317, 59 (2001).

    Article  Google Scholar 

  22. 22.

    S. Hyun, A.M. Karlsson, S. Torquato, and A.G. Evans: Simulated properties of Kagomé and tetragonal truss core panels. Int. J. Solids Struct. 40, 6989 (2003).

    Article  Google Scholar 

  23. 23.

    S. Markkula, S. Storck, D. Burns, and M. Zupan: Compressive behavior of pyramidal, tetrahedral, and strut-reinforced tetrahedral ABS and electroplated cellular solids. Adv. Eng. Mater. 11, 56 (2009).

    CAS  Article  Google Scholar 

Download references


The authors thank Zachary Ulbig for assistance in running the Additive Manufacturing system utilized for this work. This work was supported by the JHU/APL Research and Exploratory Development Independent Research and Development Program.

Author information



Corresponding authors

Correspondence to Morgana M. Trexler or Steven Storck.

Supplementary material

Supplementary material

The supplementary material for this article can be found at:

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

McCue, I., Peitsch, C., Montalbano, T. et al. Scalable laser powder bed fusion processing of nitinol shape memory alloy. MRS Communications 9, 1214–1220 (2019).

Download citation