Skip to main content

Enhancing ionic conductivity with fluorination in organosilyl solvents for lithium-ion battery electrolytes


Increasing fluorination of organosilyl nitrile solvents improves ionic conductivities of lithium salt electrolytes, resulting from higher values of salt dissociation. Ionic conductivities at 298 K range from 1.5 to 3.2 mS/cm for LiPF6 salt concentrations at 0.6 or 0.7 M. The authors also report on solvent blend electrolytes where the fluoroorganosilyl (FOS) nitrile solvent is mixed with ethylene carbonate and diethyl carbonate. Ionic conductivities of the FOS solvent/carbonate blend electrolytes increase achieving ionic conductivities at 298 K of 5.5–6.3 mS/cm and salt dissociation values ranging from 0.42 to 0.45. Salt dissociation generally decreases with increasing temperature.

This is a preview of subscription content, access via your institution.

Figure 1.
Figure 2.
Figure 3.


  1. 1.

    B. Scrosati: Lithium batteries: from early stages to the future. In Lithium Batteries: Advanced Technologies and Applications, edited by K.M. Abraham, W. van Schalkwijk, and J. Hassoun (Wiley: NJ, 2013), Chapter 2, pp. 21–38.

    Chapter  Google Scholar 

  2. 2.

    D. Aurbach and A. Schecter: Advanced liquid electrolytes. In Lithium Batteries: Science and Technology, edited by G.A. Nazri and G. Pistoia (Springer: New York, 2003), Chapter 18, pp. 530–573.

    Chapter  Google Scholar 

  3. 3.

    N.A.A. Rossi and R. West: Silicon-containing liquid polymer electrolytes for application in lithium ion batteries. Polym. Int. 58, 267–272 (2009).

    CAS  Article  Google Scholar 

  4. 4.

    Flashpoint of diethyl carbonate is tabulated in (accessed May 6, 2019).

  5. 5.

    J.A. Peña Hueso, D. Osmalov, J. Dong, M. Usrey, M. Pollina, and R.C. West: Nitrile-substituted silanes and electrolyte compositions and electrochemical devices containing them. U.S. Patent No. 0356735A1, 2014.

    Google Scholar 

  6. 6.

    S.L. Guillot, A. Peña Hueso, M.L. Usrey, and R.J. Hamers: Thermal and hydrolytic decomposition mechanisms of organosilicon electrolytes with enhanced thermal stability for lithium-ion batteries. J. Electrochem. Soc. 164, A1907–A1917 (2017).

    CAS  Article  Google Scholar 

  7. 7.

    X. Chen, M. Usrey, A. Peña Hueso, R. West, and R.J. Hamers: Thermal and electrochemical stability of organosililcon electrolytes for lithium-ion batteries. J. Power Sources 241, 311–319 (2013).

    CAS  Article  Google Scholar 

  8. 8.

    Q. Ma and B.K. Mandal: Highly conductive electrolytes derived from nitrile solvents. J. Electrochem. Soc. 162, A1276–A1281 (2015).

    CAS  Article  Google Scholar 

  9. 9.

    B. Xie, Y. Mai, J. Wang, H. Luo, X. Yan, and L. Zhang: Dinitrile compound containing ethylene oxide moiety with enhanced solubility of lithium salts as electrolyte solvent for high-voltage lithium-ion batteries. Ionics 21, 909–915 (2015).

    CAS  Article  Google Scholar 

  10. 10.

    D. Farhat, F. Ghamouss, J. Maiback, K. Edstrom, and D. Lemordant: Adiponitrile-lithium bis(trimethylsulfonyl)imide solutions as alkyl carbonate-free electrolytes for Li4Ti5O12 (LTO)/LiNi1/3Co1/3Mn1/3O2 (NMC) Li-ion batteries. Chem Phys Chem 18, 1–13 (2017).

    Article  Google Scholar 

  11. 11.

    R. Rohan, T.-C. Kuo, J.-H. Lin, Y.-C. Hsu, C.-C. Li, and J.-T. Lee: Dinitrile-mononitrile-based electrolyte system for lithium-ion battery application with the mechanism of reductive decomposition of mononi-triles. J. Phys. Chem. C 120, 6450–6458 (2016).

    CAS  Article  Google Scholar 

  12. 12.

    B. Pohl, M. Grunebaum, M. Drews, S. Passerini, M. Winter, and H.-D. Wiemhofer: Nitrile functionalized silyl ether with dissolved LiTFSI as new electrolyte solvent for lithium-ion batteries. Electrochim. Acta 180, 79–800 (2015).

    Article  Google Scholar 

  13. 13.

    B. Pohl and H.-D. Wiemhofer: Highly thermal and electrochemical stable dinitrile disiloxane as Co-solvent for use in lithium-ion batteries. J. Electrochem. Soc. 162, A460–A464 (2015).

    CAS  Article  Google Scholar 

  14. 14.

    Y. Horowitz, I. Ben-Barak, D. Schneier, M. Goor-Dar, J. Kasnatscheew, P. Meister, M. Grunebaum, H.-D. Wiemhofer, M. Winter, D. Golodnitsky, and E. Peled: Study of the formation of a solid electrolyte interphase (SEI) on a silicon nanowire anode in liquid disiloxane electrolyte with nitrile end groups for lithium-ion batteries. Batteries Supercaps 2, 213–222 (2019).

    CAS  Article  Google Scholar 

  15. 15.

    J. Wang, T. Yong, J. Yang, C. Ouyand, and L. Zhang: Organosilicon functionalized glycerol carbonates as electrolytes for lithium-ion batteries. RSC Adv. 5, 17660–17666 (2015).

    CAS  Article  Google Scholar 

  16. 16.

    M. Phillip, R. Bhandary, F.J. Groche, M. Schonhoff, and B. Rieger: Structure-property relationship and transport properties of structurally related silyl carbonate electrolytes. Electrochim. Acta 173, 687–697 (2015).

    Article  Google Scholar 

  17. 17.

    J.A. Peña Hueso, J. Dong, M. Pollina, M.L. Usrey, R.J. Hamers, R.C. West, and D. Osmalov: Halogenated organosilicon electrolytes, methods of using them, and electrochemical devices containing them. U.S. Patent No. 0270573A1, 2015.

    Google Scholar 

  18. 18.

    K. Xu: Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11504–11593 (2014).

    Article  Google Scholar 

  19. 19.

    S. Ueda, K. Yamada, K. Konno, M. Hoshino, K. Kojima, and N. Tanaka: A theoretical study of growth of solid-electrolyte-interphase films in lithium-ion batteries with organosilicon compounds. MRS Adv. 4, 801–806 (2019).

    CAS  Article  Google Scholar 

  20. 20.

    L.J. Lyons, A. Pena-Hueso, T. Johnson, and R. West: Silyl and silyl/car-bonate blend electrolytes for lithium-ion battery applications. ECS Trans. 73, 281–288 (2016).

    CAS  Article  Google Scholar 

  21. 21.

    W.V. Barth, A. Peña-Hueso, L. Zhou, L.J. Lyons, and R. West: Ionic conductivity studies of LiBOB-doped silyl solvent blend electroltyes for lithium-ioin battery applications. J. Power Sources 272, 190–195 (2014).

    CAS  Article  Google Scholar 

  22. 22.

    L.J. Lyons, S. Beecher, E. Cunningham, T. Derrah, S. Su, J. Zhu, M. Usrey, A. Peña-Hueso, T. Johnson, and R. West: Enhanced lithium ion transport in organosilyl electrolytes for lithium-ion battery applications. MRS Commun. (2019), in press.

    Google Scholar 

  23. 23.

    D.R. MacFarlane, M. Forsyth, E.I. Izgorodina, A.P. Abbott, G. Annat, and K. Fraser: On the concept of ionicity in ionic liquids. Phys. Chem. Chem. Phys. 11, 4962–4967 (2009).

    CAS  Article  Google Scholar 

  24. 24.

    K. Hayamizu: Temperature dependence of self-diffusion coefficients of ions and solvents in ethylene carbonate, propylene carbonate, and diethyl carbonate single solutions and ethylene carbonate + diethyl carbonate binary solutions of LiPF6 studied by NMR. J. Chem. Eng. Data 57, 2012–2017 (2012).

    CAS  Article  Google Scholar 

  25. 25.

    A. Nakanishi, K. Ueno, D. Watanabe, Y. Ugata, Y. Matsumae, J. Liu, M.L. Thomas, K. Dokko, and M. Watanabe: Sulfolane-based highly concentrated electrolytes of lithium bis(Trifluoromethanesulfonyl)amide: ionic transport, Li ion coordination and Li-S battery performance. J. Phys. Chem. C (2019). Accepted. doi:10.1021/acs.jpcc.9b02625.

    Google Scholar 

  26. 26.

    P.M. Richardson, A.M. Voice, and I.M. Ward: Pulsed-field gradient NMR self diffusion and ionic conductivity measurements for liquid electrolytes containing LiBF4 and propylene carbonate. Electrochim. Acta 130, 606–618 (2014).

    CAS  Article  Google Scholar 

Download references


The project was funded by the Grinnell College MAP program. NSF-MRI (Grant No. 0116159) funded the impedance equipment.

Author information



Corresponding author

Correspondence to Leslie J. Lyons.

Supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lyons, L.J., Derrah, T., Sharpe, S. et al. Enhancing ionic conductivity with fluorination in organosilyl solvents for lithium-ion battery electrolytes. MRS Communications 9, 1200–1205 (2019).

Download citation