Skip to main content

Anisotropic thermal conductivity in direction-specific black phosphorus nanoflakes


Herein, the authors report our pioneering demonstration of the anisotropic thermal properties of black phosphorus (BP) nanoflakes. The nano-flakes were produced using a scotch tape-based mechanical exfoliation technique. Their thickness was characterized using Atomic Force Microscopy The anisotropic direction of the nanoflakes was determined by the Raman Spectroscopy equipped with a polarized laser. Then, a temperature-dependent Raman spectroscopy method was utilized to study the thermal transport properties of the BP nanoflakes. The results indicated that the thermal conductivities of zigzag BP and armchair nanoflakes are 30.6 and 12.6 W/m•K, respectively. This fundamental thermal study gives insight into the future fabrication of nanoscale electronic devices with thermal properties that can be well controlled.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4


  1. 1.

    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov: Electric field effect in atomically thin carbon films. Science 306, 666 (2004).

    CAS  Article  Google Scholar 

  2. 2.

    Y. Li and N. Chopra: Progress in large-scale production of graphene. Part 2: vapor methods. JOM 67, 44 (2015).

    CAS  Article  Google Scholar 

  3. 3.

    A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.Y. Chim, G. Galli, and F. Wang: Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271 (2010).

    CAS  Article  Google Scholar 

  4. 4.

    F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, and K.S. Novoselov: Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652 (2007).

    CAS  Article  Google Scholar 

  5. 5.

    K.F. Mak, C. Lee, J. Hone, J. Shan, and T.F. Heinz: Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett 105, 136805 (2010).

    Article  Google Scholar 

  6. 6.

    A. Castellanos-Gomez, L. Vicarelli, E. Prada, J.O. Island, K.L. Narasimha-Acharya, S.I. Blanter, D. Groenendijk, M. Buscema, G.A. Steele, J.V. Alvarez, H.W. Zandbergen, J.J. Palacios, and S.J. Van der Zant: Isolation and characterization of few-layer black phosphorus. 2D Mater. 1, 025001 (2014).

    Article  Google Scholar 

  7. 7.

    F. Xia, H. Wang, and Y. Jia: Rediscovering black phosphorus as an aniso-tropic layered material for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014).

    CAS  Article  Google Scholar 

  8. 8.

    Q. Li, H. Huang, Z. Chen, X. Huang, K. Deng, S. Luo, and Z. Quan: Thickness-dependent structural stability and anisotropy of black phosphorus. Adv. Electron. Mater. 5, 1800712 (2019).

    Article  Google Scholar 

  9. 9.

    Y. Liu, T. Low, and P.P. Ruden: Mobility anisotropy in monolayer black phosphorus due to scattering by charged impurities. Phys. Rev. B 93, 165402 (2016).

    Article  Google Scholar 

  10. 10.

    A. Favron, E. Gaufrès, F. Fossard, P. Lévesque, A. Phaneuf-L’Heureux, N. Tang, and R. Martel: Exfoliating pristine black phosphorus down to the monolayer: photo-oxidation and electronic confinement effects. arXiv Preprint 1408, 0345 (2014).

    Google Scholar 

  11. 11.

    A.K. Geim and K.S. Novoselov: The rise of graphene. Nat. Mater. 6, 183 (2007).

    CAS  Article  Google Scholar 

  12. 12.

    V. Tran, R. Soklaski, Y. Liang, and L. Yang: Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 89, 235319 (2014).

    Article  Google Scholar 

  13. 13.

    Y. Li, W. Shi, and N. Chopra: Functionalization of multilayer carbon shell-encapsulated gold nanoparticles for surface-enhanced Raman scattering sensing and DNA immobilization. Carbon 100, 165 (2016).

    CAS  Article  Google Scholar 

  14. 14.

    Y. Li, J. Dykes, T. Gilliam, and N. Chopra: A new heterostructured SERS substrate: free-standing silicon nanowires decorated with graphene-encapsulated gold nanoparticles. Nanoscale 9, 5263 (2017).

    CAS  Article  Google Scholar 

  15. 15.

    J. Kang, J.D. Wood, S.A. Wells, J.-H. Lee, X. Liu, K.-S. Chen, and M.C. Hersam: Solvent exfoliation of electronic-grade, two-dimensional black phosphorus. ACS Nano 9, 3596 (2015).

    CAS  Article  Google Scholar 

  16. 16.

    S. Liu, N. Huo, S. Gan, Y. Li, Z. Wei, B. Huang, and H. Chen: Thickness-dependent Raman spectra, transport properties and infrared photoresponse of few-layer black phosphorus. J. Mater. Chem. C 3, 10974 (2015).

    CAS  Article  Google Scholar 

  17. 17.

    Y. Li, Z. Hu, S. Lin, S.K. Lai, W. Ji, and S.P. Lau: Giant anisotropic Raman response of encapsulated ultrathin black phosphorus by uniaxial strain. Adv. Funct. Mater. 27, 1600986 (2017).

    Article  Google Scholar 

  18. 18.

    H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P.D. Ye: Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033 (2014).

    CAS  Article  Google Scholar 

  19. 19.

    Y. Li, E.C. Moy, A.A. Murthy, S. Hao, J.D. Cain, E.D. Hanson, and X. Chen: Large-scale fabrication of MoS2 ribbons and their light-induced electronic/thermal properties: dichotomies in the structural and defect engineering. Adv. Funct. Mater. 28, 1704863 (2018).

    Article  Google Scholar 

  20. 20.

    P. Chen, N. Li, X. Chen, W.J. Ong, and X. Zhao: The rising star of 2D black phosphorus beyond graphene: synthesis, properties and electronic applications. 2D Mater. 5, 014002 (2017).

    Article  Google Scholar 

  21. 21.

    J. Tao, W. Shen, S. Wu, L. Liu, Z. Feng, C. Wang, and W. Pang: Mechanical and electrical anisotropy of few-layer black phosphorus. ACS Nano 9, 11362–11370 (2015).

    CAS  Article  Google Scholar 

  22. 22.

    A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau: Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902 (2008).

    CAS  Article  Google Scholar 

  23. 23.

    Y. Li and N. Chopra: Chemically modified and doped carbon nanotube-based nanocomposites with tunable thermal conductivity gradient. Carbon 77, 675 (2014).

    CAS  Article  Google Scholar 

  24. 24.

    R. Yan, J.R. Simpson, S. Bertolazzi, J. Brivio, M. Watson, X. Wu, and H.G. Xing: Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy. ACS Nano 8, 986 (2014).

    CAS  Article  Google Scholar 

  25. 25.

    A.A. Balandin: Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569 (2011).

    CAS  Article  Google Scholar 

  26. 26.

    X. Wang, A.M. Jones, K.L. Seyler, V. Tran, Y. Jia, H. Zhao, and F. Xia: Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 10, 517 (2015).

    CAS  Article  Google Scholar 

  27. 27.

    N. Mao, S. Zhang, J. Wu, H. Tian, J. Wu, H. Xu, and J. Zhang: Investigation of black phosphorus as a nano-optical polarization element by polarized Raman spectroscopy. Nano Res. 11, 3154 (2018).

    CAS  Article  Google Scholar 

  28. 28.

    W. Zhu, L. Liang, R.H. Roberts, J.F. Lin, and D. Akinwande: Anisotropic electron–phonon interactions in angle-resolved Raman study of strained black phosphorus. ACS Nano 12, 12512 (2018).

    CAS  Article  Google Scholar 

  29. 29.

    S. Lee, F. Yang, J. Suh, S. Yang, Y. Lee, G. Li, and C. Ko: Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K. Nat. Commun. 6, 8573 (2015).

    CAS  Article  Google Scholar 

  30. 30.

    Z. Luo, J. Maassen, Y. Deng, Y. Du, R.P. Garrelts, M.S. Lundstrom, and X. Xu: Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nat. Commun. 6, 8572 (2015).

    CAS  Article  Google Scholar 

  31. 31.

    S.G. Jeon, H. Shin, Y.H. Jaung, J. Ahn, and J.Y. Song: Thickness-dependent and anisotropic thermal conductivity of black phosphorus nanosheets. Nanoscale 10, 5985 (2018).

    CAS  Article  Google Scholar 

  32. 32.

    A. Islam, A. van den Akker, and P.X.L. Feng: Anisotropic thermal conductivity of suspended black phosphorus probed by opto-thermomechanical resonance spectromicroscopy. Nano Lett. 18, 7683 (2018).

    CAS  Article  Google Scholar 

Download references


This work was partly supported by National Natural Science Foundation of China (No. 51802258) and project funded by the China Postdoctoral Science Foundation (No. 2018M643698).

Author information



Corresponding author

Correspondence to Heguang Liu.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Liu, J., Jing, R. et al. Anisotropic thermal conductivity in direction-specific black phosphorus nanoflakes. MRS Communications 9, 1311–1316 (2019).

Download citation