Skip to main content

Use of surface photo-reactive nanometal printing for polymer thin-film transistors: contact resistance and short-channel effects

Abstract

A crucial target in the printed electronics technologies is to realize all-printed thin-film transistors (TFTs), as being applicable to the industry. Here, the authors report printed polymer TFTs through the integration of the SuPR-NaP technique, a promising way for manufacturing ultrafine printed silver electrodes, with printed polymer semiconductor layers. The authors used a class of donor–acceptor-type copolymer, PDVT-10, and found that the devices exhibit excellent TFT characteristics. The devices allow the transfer length method measurements with high accuracy, where the estimated contact resistance is considerably small (4.7 kΩ cm) among the bottom-contact TFTs using printed silver electrodes, with also showing short-channel effects.

This is a preview of subscription content, access via your institution.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

References

  1. 1.

    H. Sirringhaus: 25th anniversary article: organic field-effect transistors: the path beyond amorphous silicon. Adv. Mater. 26, 1319 (2014).

    CAS  Article  Google Scholar 

  2. 2.

    K. Fukuda and T. Someya: Recent progress in the development of printed thin-film transistors and circuits with high-resolution printing technology. Adv. Mater. 29, 1602736 (2016).

    Article  Google Scholar 

  3. 3.

    T. Sekitani, Y. Noguchi, U. Zschieschang, H. Klauk, and T. Someya: Organic transistors manufactured using inkjet technology with subfemto-liter accuracy. Proc. Natl. Acad. Sci. USA 105, 4976 (2008).

    CAS  Article  Google Scholar 

  4. 4.

    X. Liu, M. Kanehara, C. Liu, K. Sakamoto, T. Yasuda, J. Takeya, and T. Minari: Spontaneous patterning of high-resolution electronics via parallel vacuum ultraviolet. Adv. Mater. 28, 6568 (2016).

    CAS  Article  Google Scholar 

  5. 5.

    A. Perinot, P. Kshirsagar, M.A. Malvindi, P.P. Pompa, R. Fiammengo, and M. Caironi: Direct-written polymer field-effect transistors operating at 20 MHz. Sci. Rep. 6, 38941 (2016).

    CAS  Article  Google Scholar 

  6. 6.

    T. Yamada, K. Fukuhara, K. Matsuoka, H. Minemawari, J. Tsutsumi, N. Fukuda, K. Aoshima, S. Arai, Y. Makita, H. Kubo, T. Enomoto, T. Togashi, M. Kurihara, and T. Hasegawa: Nanoparticle chemisorption printing technique for conductive silver patterning with submicron resolution. Nat. Commun 7, 11402 (2016).

    CAS  Article  Google Scholar 

  7. 7.

    B. Blülle, R. Häusermann, and B. Batlogg: Approaching the trap-free limit in organic single-crystal field-effect transistors. Phys. Rev. Appl. 1, 034006 (2014).

    Article  Google Scholar 

  8. 8.

    W.L. Kalb, T. Mathis, S. Haas, A.F. Stassen, and B. Batlogg: Organic small molecule field-effect transistors with Cytop™ gate dielectric: eliminating gate bias stress effects. Appl. Phys. Lett. 90, 092104 (2007).

    Article  Google Scholar 

  9. 9.

    M. Ikawa, T. Yamada, H. Matsui, H. Minemawari, J. Tsutsumi, Y. Horii, M. Chikamatsu, R. Azumi, R. Kumai, and T. Hasegawa: Simple push coating of polymer thin-film transistors. Nat. Commun. 3, 1176 (2012).

    Article  Google Scholar 

  10. 10.

    G. Kitahara, K. Aoshima, J. Tsutsumi, H. Minemawari, S. Arai, and T. Hasegawa: Low-voltage operation of organic thin-film transistors based on ultrafine printed silver electrodes. Org. Electron. 50, 426–428 (2017).

    CAS  Article  Google Scholar 

  11. 11.

    K. Aoshima, S. Arai, K. Fukuhara, T. Yamada, and T. Hasegawa: Surface modification of printed silver electrodes for efficient carrier injection in organic thin-film transistors. Org. Electron. 41, 137 (2017).

    CAS  Article  Google Scholar 

  12. 12.

    H. Chen, Y. Guo, G. Yu, Y. Zhao, J. Zhang, D. Gao, H. Liu, and Y. Liu: Highly π-extended copolymers with diketopyrrolopyrrole moieties for high-performance field-effect transistors. Adv. Mater. 24, 4618 (2012).

    CAS  Article  Google Scholar 

  13. 13.

    K. Pei, M. Chen, Z. Zhou, H. Li, and P.K.L. Chan: Overestimation of carrier mobility in organic thin film transistors due to unaccounted fringe currents. ACS Appl. Electron. Mater. 1, 379 (2019).

    CAS  Article  Google Scholar 

  14. 14.

    J. Liu, Q. Ge, W. Zhang, J. Ma, J. Ding, G. Yu, and J. Hu: Highly π-extended copolymer as additive-free hole-transport material for perov-skite solar cells. Nano. Res. 11, 185 (2018).

    CAS  Article  Google Scholar 

  15. 15.

    T. Uemura, C. Rolin, T.-H. Ke, P. Fesenko, J. Genoe, P. Heremans, and J. Takeya: On the extraction of charge carrier mobility in high-mobility organic transistors. Adv. Mater. 28, 151 (2016).

    CAS  Article  Google Scholar 

  16. 16.

    J. Tsutsumi, S. Matsuoka, I. Osaka, R. Kumai, and T. Hasegawa: Reduced exchange narrowing caused by gate-induced charge carriers in high-mobility donor-acceptor copolymers. Phys. Rev. B 95, 115306 (2017).

    Article  Google Scholar 

  17. 17.

    S. Kwon, K. Yu, K. Kweon, G. Kim, J. Kim, H. Kim, Y.R. Jo, B.J. Kim, J. Kim, S.H. Lee, and K. Lee: Template-mediated nano-crystallite networks in semiconducting polymers. Nat. Commun. 5, 4183 (2014).

    CAS  Article  Google Scholar 

  18. 18.

    T. Okachi: Mobility overestimation due to minority carrier injection and trapping in organic field-effect transistors. Org. Electron. 57, 34 (2018).

    CAS  Article  Google Scholar 

  19. 19.

    S.M. Sze: Semiconductor Device: Physics and Technology (John Wiley & Sons, New York, NY, USA, 1985).

    Google Scholar 

  20. 20.

    J.H. Haddock, X. Zhang, S. Zheng, Q. Zhang, S.R. Marder, and B. Kippelen: A comprehensive study of short channel effects in organic field-effect transistors. Org. Electron. 7, 45 (2006).

    Article  Google Scholar 

  21. 21.

    T. Yokota, T. Sekitani, Y. Kato, K. Kuribara, U. Zschieschang, H. Klauk, T. Yamamoto, K. Takimiya, H. Kuwabara, M. Ikeda, and T. Someya: Low-voltage organic transistor with subfemtoliter inkjet source-drain contacts. MRS Commun. 1, 3 (2011).

    CAS  Article  Google Scholar 

  22. 22.

    J.W. Borchert, B. Peng, F. Letzkus, J.N. Burghartz, P.K.L. Chan, K. Zojer, S. Ludwigs, and H. Klauk: Small contact resistance and high-frequency operation of flexible low-voltage inverted coplanar organic transistors. Nat. Commun. 10, 1119 (2019).

    Article  Google Scholar 

  23. 23.

    S. Chung, J. Jeong, D. Kim, Y. Park, C. Lee, and Y. Hong: Contact resistance of inkjet-printed silver source-drain electrodes in bottom-contact OTFTs. J. Disp. Technol. 8, 48 (2012).

    CAS  Article  Google Scholar 

  24. 24.

    K. Fukuda, T. Sekine, Y. Kobayashi, D. Kumaki, M. Itoh, M. Nagaoka, T. Toda, S. Saito, M. Kurihara, M. Sakamoto, and S. Tokito: Stable organic thin-film transistors using full solution-processing and low-temperature sintering silver nanoparticle inks. Org. Electron. 13, 1660 (2012).

    CAS  Article  Google Scholar 

  25. 25.

    K. Fukuda, T. Sekine, Y. Kobayashi, Y. Takeda, M. Shimizu, N. Yamashita, D. Kumaki, M. Itoh, M. Nagaoka, T. Toda, S. Saito, M. Kurihara, M. Sakamoto, and S. Tokito: Organic integrated circuits using room-temperature sintered silver nanoparticles as printed electrodes. Org. Electron. 13, 3296 (2012).

    CAS  Article  Google Scholar 

  26. 26.

    K. Fukuda, Y. Takeda, M. Mizukami, D. Kumaki, and S. Tokito: Fully solution-processed flexible organic thin film transistor arrays with high mobility and exceptional uniformity. Sci. Rep. 4, 3947 (2014).

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by JST CREST (Grant No. JPMJCR18J2) and A-STEP (Grant No. VP30318087386) from the Japan Science and Technology Agency, and JSPS KAKENHI (Grant No. 18H03875) from the Japan Society for the Promotion of Science (JSPS). This study was also supported by the research grant from the Leadership Development Program for Ph.D. (LDPP) in the University of Tokyo.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gyo Kitahara.

Supplementary material

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2019.126.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kitahara, G., Ikawa, M., Matsuoka, S. et al. Use of surface photo-reactive nanometal printing for polymer thin-film transistors: contact resistance and short-channel effects. MRS Communications 9, 1181–1185 (2019). https://doi.org/10.1557/mrc.2019.126

Download citation