Skip to main content

Modifying chemical composition of the fine Ni4Nb2O9 powders using chloride melts as reaction medium

Abstract

Thermal stable chloride melts were used as the reaction medium for modifying the chemical composition of complex oxides ensuring a marked improvement of their working properties. This paper discusses the original results of the direct effect of molten KCl–CoCl2 mixtures on the fine Ni4Nb2O9 powders under argon- and oxygen-containing gaseous atmospheres at 500 °C. The initial Ni4Nb2O9 powder and the reaction products were studied in detail using the differential scanning calorimetry, thermogravimetry, x-ray diffractometry, Raman and IR spectroscopies, scanning electron microscopy, energy-dispersive x-ray spectroscopy, chemical analysis, and conductometry which demonstrated clearly the formation of the thermal stable single-phase Ni–Co niobates.

This is a preview of subscription content, access via your institution.

Table I
Figure 1
Figure 2
Figure 3

References

  1. 1.

    R. Wichmann and H. Mueller-Buschbaum: Zur Kristallstruktur von Ni4Nb2O9. Z. Anorg. Allg. Chem. 525, 135 (1985).

    CAS  Article  Google Scholar 

  2. 2.

    R. Wichmann and H. Mueller-Buschbaum: Eine neue Kristallstruktur des Nickel‐Oxoniobats: II‐Ni4Nb2O9. Z. Anorg. Allg. Chem. 539, 203 (1986).

    CAS  Article  Google Scholar 

  3. 3.

    A. Kan, H. Ogawa, A. Yokoi, and Y. Nakamura: Crystal structural refinement of corundum-structured A4M2O9 (A = Co and Mg, M = Nb and Ta) microwave dielectric ceramics by high-temperature X-ray powder diffraction. J. Eur. Ceram. Soc. 27, 2977 (2007).

    CAS  Article  Google Scholar 

  4. 4.

    J. Santander, E. López, A. Diez, M. Dennehy, M. Pedernera, and G. Tonetto: Ni–Nb mixed oxides: one-pot synthesis and catalytic activity for oxidative dehydrogenation of ethane. Chem. Eng. J. 255, 185 (2014).

    CAS  Article  Google Scholar 

  5. 5.

    E. Heracleous and A.A. Lemonidou: Ni–Nb–O mixed oxides as highly active and selective catalysts for ethene production via ethane oxidative dehydrogenation. Part I: characterization and catalytic performance. J. Catal. 237, 162 (2006).

    CAS  Article  Google Scholar 

  6. 6.

    H. Zhu, H. Dong, P. Laveille, Y. Saih, V. Caps, and J.-M. Basset: Metal oxides modified NiO catalysts for oxidative dehydrogenation of ethane to ethylene. Catal. Today 228, 58 (2014).

    CAS  Article  Google Scholar 

  7. 7.

    A. Qiao, V.N. Kalevaru, A. Kumar, N. Lingaiah, P.S. Prasad, and A. Martin: Effect of CO2-admixture on the catalytic performance of Ni–Nb–M–O catalysts in oxidative dehydrogenation of ethane to ethylene. DGMK Tagungsber. 3, 97 (2012).

    Google Scholar 

  8. 8.

    A. Mirzaei, G.-J. Sun, J.K. Lee, C. Lee, S. Choi, and H.W. Kim: Hydrogen sensing properties and mechanism of NiO–Nb2O5 composite nanoparticle-based electrical gas sensors. Ceram. Int. 43, 5247 (2017).

    CAS  Article  Google Scholar 

  9. 9.

    A.L. Podkorytov, S.A. Shtin, A.S. Kashapova, A.A. Luppov, and N.S. Shubina: Ga- and Ti-containing Ni4Nb2O9-based solid solutions for Ni-selective electrodes. Inorg. Mater. 49, 1044 (2013).

    CAS  Article  Google Scholar 

  10. 10.

    Y.-C. Loiu: Reaction-sintering process for preparing electronic ceramics. Recent Pat. Mater. Sci. 8, 225 (2015).

    CAS  Article  Google Scholar 

  11. 11.

    H. Ehrenberg, G. Wltschek, H. Weitzel, F. Trouw, J.H. Buettner, T. Kroener, and H. Fuess: Ferrimagnetism in Ni4Nb2O9. Phys. Rev. B 52, 9595 (1995).

    CAS  Article  Google Scholar 

  12. 12.

    N.V. Tarakina, E.A. Nikulina, J. Hadermann, D.G. Kellerman, A.P. Tyutyunnik, I.F. Berger, V.G. Zubkov, and G. Van Tendeloo: Crystal structure and magnetic properties of complex oxides Mg4-xNixNb2O9, 0≤x≤4. J. Solid State Chem. 180, 3180 (2007).

    CAS  Article  Google Scholar 

  13. 13.

    V. Khokhlov, D. Modenov, V. Dokutovich, V. Kochedykov, I. Zakir’yanova, E. Vovkotrub, and I. Beketov: Lithium oxide solution in chloride melts as a medium to prepare LiCoO2 nanoparticles. MRS Commun. 4, 15 (2014).

    CAS  Article  Google Scholar 

  14. 14.

    A.R. Kamali and D.J. Fray: Preparation of lithium niobate particles via reactive molten salt synthesis method. Ceram. Int. 40, 1835 (2014).

    CAS  Article  Google Scholar 

  15. 15.

    L. Li, J. Deng, J. Chen, and X. Xing: Topochemical molten salt synthesis for functional perovskite compounds. Chem. Sci. 7, 855 (2016).

    CAS  Article  Google Scholar 

  16. 16.

    A. Burdese, M.L. Borlera, and P. Rolando: Systems between niobium oxides and the oxides of nickel and cobalt. Atti Accad. Sci. Torino: I. Classe Sci. Fis. Mat. Nat 99, 565 (1964) (in Italian).

    Google Scholar 

  17. 17.

    O. Khamman, R. Yimnirun, and S. Ananta: Phase and morphology evolution of corundum-type Ni4Nb2O9 powders synthesized by solid-state reaction. Mater. Lett. 61, 2565 (2007).

    CAS  Article  Google Scholar 

  18. 18.

    M.I. Pantyukhina, A.L. Podkorytov, and V.M. Zhukovskii: Phase equilibria, charge transport, and mass transport in Sr4Nb2O9–M4Nb2O9 (M = Cd, Cu, Ni, and Zn) systems. Russ. J. Inorg. Chem 55, 103 (2010).

    CAS  Article  Google Scholar 

  19. 19.

    Y.-C. Liou, Z.-S. Tsai, K.-Z. Fung, and C.-Y. Liu: Ni4Nb2O9 ceramics prepared by the reaction-sintering process. Ceram. Int. 36, 1887 (2010).

    CAS  Article  Google Scholar 

  20. 20.

    A.L. Timofeev, A.L. Podkorytov, S.A. Shtin, V.O. Mal’tseva, A.D. Bamburov, and S.N. Marshenya: Solid-state synthesis, characterization, and properties of Ni4Nb2O9-based solid solution. Inorg. Mater. 53, 869–873 (2017).

    CAS  Article  Google Scholar 

  21. 21.

    O. Khamman, J. Jainumpone, A. Watcharapasorn, and S. Ananta: Fabrication, phase formation and microstructure of Ni4Nb2O9 ceramics fabricated by using the two-stage sintering technique. J. Korean Phys. Soc. 69, 365 (2016).

    CAS  Article  Google Scholar 

  22. 22.

    S.A. Shtin, A.L. Podkorytov, Y.S. Khlupin, S.R. Kudakaeva, E.V. Sokolova, and K.A. Khuramshina: Electrochemical properties of Ni4Nb2O9-based ceramics. Inorg. Mater. 46, 1274 (2010).

    CAS  Article  Google Scholar 

  23. 23.

    H.-J. Seifert: Über die Systeme Alkalimetallchlorid/Kobalt(II)-chlorid. Z. Anorg. Allg. Chem. 307, 137 (1961).

    Article  Google Scholar 

  24. 24.

    C. Robelin, P. Chartrand, and A.D. Pelton: Thermodynamic evaluation and optimization of the (NaCl + KCl + MgCl2 + CaCl2 + MnCl2 + FeCl2 + CoCl2 + NiCl2) system. J. Chem. Thermodyn. 36, 809 (2004).

    CAS  Article  Google Scholar 

  25. 25.

    V.Y. Shishkin and V.S. Mityaev: Purification of alkali halides by zone melting method. Izv. USSR Acad. Sci. Inorg. Mater. 18, 1917 (1982) (in Russian).

    CAS  Google Scholar 

  26. 26.

    B.P. Burylev, V.L. Mironov, L. Tsemekhman, and I.T. Sryvalin: Equilibrium vapor pressures over molten salts in CoCl2–MCl systems. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 18, 663 (1975) (in Russian).

    CAS  Google Scholar 

  27. 27.

    L. Alexander and H.P. Klug: Basic aspects of X-ray absorption in quantitative diffraction analysis of powder mixtures. Anal. Chem. 20, 886 (1948).

    CAS  Article  Google Scholar 

  28. 28.

    E.F. Bertaut, L. Corliss, and F. Forrat: Etude niobates et tantalates de metaux de transition bivalents. J. Phys. Chem. Solids 21, 234 (1961).

    CAS  Article  Google Scholar 

  29. 29.

    N. Chaiyo, R. Muanghlua, A. Ruangphanit, W.C. Vittayakorn, and N. Vittayakorn: Synthesis, phase formation and characterization of Co4Nb2O9 powders synthesized by solid-state reaction. Adv. Mater. Res. 55–57, 873 (2008).

    Article  Google Scholar 

  30. 30.

    M. Polomska, B. Hilczer, M. Kosec, and B. Malic: Raman scattering studies of lead free (1-x)K0.5 Na0.5NbO3–xSrTiO3 relaxors. Ferroelectrics 369, 149 (2008).

    CAS  Article  Google Scholar 

  31. 31.

    J. Wang and L. Luo: The NbO6 octahedral distortion and phase structural transition of Eu3+-doped K0.5Na0.5NbO3–xLiNbO3 ferroelectric ceramics. J. Am. Ceram. Soc. 100, 1 (2017).

    CAS  Article  Google Scholar 

  32. 32.

    V.N. Tsygankov and V.V. Safonov: Electrical properties of the Nb2O5–NiO system. Inorg. Mater. 41, 1305 (2005).

    CAS  Article  Google Scholar 

  33. 33.

    A.L. Podkorytov, S.A. Shtin, V.M. Zhukovskii, and M.I. Pantyukhina: Synthesis and properties of nickel-containing niobates. Russ. J. Inorg. Chem. 44, 796 (1999).

    Google Scholar 

Download references

Acknowledgment

This study was partly supported by the Russian Foundation for Basic Research (Projects No. 15-03-00368a and No. 18-03-00475a).

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. Khokhlov.

Supplementary material

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2019.123.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khokhlov, V., Zakir’yanova, I., Dokutovich, V. et al. Modifying chemical composition of the fine Ni4Nb2O9 powders using chloride melts as reaction medium. MRS Communications 9, 1300–1305 (2019). https://doi.org/10.1557/mrc.2019.123

Download citation