Skip to main content
Log in

An informatics software stack for point defect-derived opto-electronic properties: the Asphalt Project

  • Artificial Intelligence Prospective
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Computational acceleration of performance metric-based materials discovery via high-throughput screening and machine learning methods is becoming widespread. Nevertheless, development and optimization of the opto-electronic properties that depend on dilute concentrations of point defects in new materials have not significantly benefited from these advances. Here, the authors present an informatics and simulation suite to computationally accelerate these processes. This will enable faster and more fundamental materials research, and reduce the cost and time associated with the materials development cycle. Analogous to the new avenues enabled by current first-principles-based property databases, this type of framework will open entire new research frontiers as it proliferates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. J.P. Holdren, T. Kalil, and C. Wadia: Materials Genome Initiative for Global Competitiveness (National Science and Technology Council OSTP, Washington, USA, 2011).

    Google Scholar 

  2. A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K.A. Persson: Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    Article  Google Scholar 

  3. J.E. Saal, S. Kirklin, M. Aykol, B. Meredig, and C. Wolverton: Materials design and discovery with high-throughput density functional theory: the open quantum materials database (OQMD). JOM 65, 1501 (2013).

    Article  CAS  Google Scholar 

  4. S. Curtarolo, W. Setyawan, G.L. Hart, M. Jahnatek, R.V. Chepulskii, R.H. Taylor, S. Wang, J. Xue, K. Yang, O. Levy, M.J. Mehl, H.T. Stokes, D.O. Demchenko, and D. Morgan: AFLOW: an automatic framework for high-throughput materials discovery. Comput. Mater. Sci. 58, 218 (2012).

    Article  CAS  Google Scholar 

  5. W. Ye, C. Chen, S. Dwaraknath, A. Jain, S.P. Ong, and K.A. Persson: Harnessing the Materials Project for machine-learning and accelerated discovery. MRS Bull. 43, 664 (2018).

    Article  Google Scholar 

  6. C. Toher, C. Oses, J.J. Plata, D. Hicks, F. Rose, O. Levy, M. de Jong, M. Asta, M. Fornari, M.B. Nardelli, and S. Curtarolo: Combining the AFLOW GIBBS and elastic libraries to efficiently and robustly screen thermomechanical properties of solids. Phys. Rev. Mater. 1, 015401 (2017).

    Article  Google Scholar 

  7. A. Jain, Y. Shin, and K.A. Persson: Computational predictions of energy materials using density functional theory. Nat. Rev. Mater 1, 15004 (2016).

    Article  CAS  Google Scholar 

  8. K. Alberi, M.B. Nardelli, A. Zakutayev, L. Mitas, S. Curtarolo, A. Jain, M. Fornari, N. Marzari, I. Takeuchi, M.L. Green, M. Kanatzidis, M.F. Toney, S. Butenko, B. Meredig, S. Lany, U. Kattner, A. Davydov, E.S. Toberer, V. Stevanovic, A. Walsh, N.-G. Park, A. Aspuru-Guzik, D.P. Tabor, J. Nelson, J. Murphy, A. Setlur, J. Gregoire, H. Li, R. Xiao, A. Ludwig, L.W. Martin, A.M. Rappe, S.-H. Wei, and J. Perkins: The 2019 materials by design roadmap. J. Phys. D: Appl. Phys. 52, 013001 (2019).

    Article  Google Scholar 

  9. D. Broberg, B. Medasani, N.E. Zimmermann, G. Yu, A. Canning, M. Haranczyk, M. Asta, and G. Hautier: PyCDT: A Python toolkit for modeling point defects in semiconductors and insulators. Comput. Phys. Commun. 226, 165 (2018).

    Article  CAS  Google Scholar 

  10. J.N. Baker, P.C. Bowes, D.M. Long, A. Moballegh, J.S. Harris, E.C. Dickey, and D.L. Irving: Defect mechanisms of coloration in Fe-doped SrTiO3 from first principles. Appl. Phys. Lett. 110, 122903 (2017).

    Article  Google Scholar 

  11. P.C. Bowes, J.N. Baker, J.S. Harris, B.D. Behrhorst, and D.L. Irving: Influence of impurities on the high temperature conductivity of SrTiO3. Appl. Phys. Lett. 112, 022902 (2018).

    Article  Google Scholar 

  12. J.N. Baker, P.C. Bowes, J.S. Harris, and D.L. Irving: Mechanisms governing metal vacancy formation in BaTiO3 and SrTiO3. J. Appl. Phys. 124, 114101 (2018).

    Article  Google Scholar 

  13. J.S. Harris, J.N. Baker, B.E. Gaddy, I. Bryan, Z. Bryan, K.J. Mirrieless, R. Collazo, Z. Sitar, and D.L. Irving: On compensation in Si-doped AlN. Appl. Phys. Lett. 112, 152101 (2018).

    Article  Google Scholar 

  14. J.N. Baker, P.C. Bowes, and D.L. Irving: Hydrogen solubility in donor-doped SrTiO3 from first principles. Appl. Phys. Lett. 113, 132904 (2018).

    Article  Google Scholar 

  15. J. Heyd, G.E. Scuseria, and M. Ernzerhof: Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207 (2003).

    Article  CAS  Google Scholar 

  16. J.P. Perdew, K. Burke, and M. Ernzerhof: Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  17. C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, and C.G. Van De Walle: First-principles calculations for point defects in solids. Rev. Mod. Phys. 86, 253 (2014).

    Article  Google Scholar 

  18. V.L. Chevrier, S.P. Ong, R. Armiento, M.K. Chan, and G. Ceder: Hybrid density functional calculations of redox potentials and formation energies of transition metal compounds. Phys. Rev. B 82, 075122 (2010).

    Article  Google Scholar 

  19. G. Kresse and J. Hafner: Ab initio molecular dynamics for liquid metals. Phys. Rev. B Condens. Matter Mater. Phys. 47, 558 (1993).

    Article  CAS  Google Scholar 

  20. C.G. Van de Walle, D. Laks, G. Neumark, and S. Pantelides: First-principles calculations of solubilities and doping limits: Li, Na, and N in ZnSe. Phys. Rev. B 47, 9425 (1993).

    Article  Google Scholar 

  21. K. Mueller, T. Von Waldkirch, W. Berlinger, and B. Faughnan: Photochromic Fe5+ (3d3) in SrTiO3 evidence from paramagnetic resonance. Solid State Commun. 9, 1097 (1971).

    Article  CAS  Google Scholar 

  22. T. Baiatu, R. Waser, and K.-H. Haerdtl: dc Electrical Degradation of Perovskite-Type Titanates: III, A Model of the Mechanism. J. Am. Ceram. Soc. 73, 1663 (1990).

    Article  CAS  Google Scholar 

  23. N.-H. Chan, R. Sharma, and D.M. Smyth: Nonstoichiometry in SrTiO3. J. Electrochem. Soc. 128, 1762 (1981).

    Article  CAS  Google Scholar 

  24. F. Mehnke, T. Wernicke, H. Pingel, C. Kuhn, C. Reich, V. Kueller, A. Knauer, M. Lapeyrade, M. Weyers, and M. Kneissl: Highly conductive n-AlxGa1-xN layers with aluminum mole fractions above 80%. Appl. Phys. Lett. 103, 212109 (2013).

    Article  Google Scholar 

  25. Y. Taniyasu, M. Kasu, and N. Kobayashi: Intentional control of n-type conduction for Si-doped AlN and AlxGa1-xN (.42=<1). Appl. Phys. Lett. 81, 1255 (2002).

    Article  CAS  Google Scholar 

  26. A. Uedono, S. Ishibashi, S. Keller, C. Moe, P. Cantu, T. Katona, D. Kamber, Y. Wu, E. Letts, S. Newman, S. Nakamura, J.S. Speck, U.K. Mishra, S.P. DenBaars, T. Onuma, and S.F. Chichibu: Vacancy-oxygen complexes and their optical properties in AlN epitaxial films studied by positron annihilation. J. Appl. Phys. 105, 054501 (2009).

    Article  Google Scholar 

  27. I. Bryan, Z. Bryan, S. Washiyama, P. Reddy, B.E. Gaddy, B. Sarkar, M.H. Breckenridge, Q. Guo, M.B. Graziano, J. Tweedie, S. Mita, D.L. Irving, R. Collazo, and Z. Sitar: Doping and compensation in Al-rich AlGaN grown on single crystal AlN and sapphire by MOCVD. Appl. Phys. Lett. 112, 062102 (2018).

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support from the AFOSR via grants FA9550-14-1-0264 and FA9550-17-1-0318, which are in the Aerospace Materials for Extreme Environments program of Dr. Ali Sayir. P.C.B. acknowledges support from the NDSEG. Computer time was provided for the generation of data by NERSC and DoD HPCMP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas L. Irving.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baker, J.N., Bowes, P.C., Harris, J.S. et al. An informatics software stack for point defect-derived opto-electronic properties: the Asphalt Project. MRS Communications 9, 839–845 (2019). https://doi.org/10.1557/mrc.2019.106

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2019.106

Navigation