Skip to main content
Log in

Reliability of inkjet printed silver nanoparticle interconnects on deformable substrates tested through an electromechanical in-situ technique

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Inkjet printing is a promising technology providing cost-effective method for processing various materials on deformable substrates. In this work, linear and serpentine inkjet printed interconnects on two different substrates were fabricated and electromechanically characterized. A particular attention was given to the optimization of the process parameters; high quality can be achieved only printing slowly in vertical direction and optimizing the drop spacing to the specific pattern. The electromechanical results showed that the geometrical layout and printing direction strongly affect the printing quality and the electromechanical response; serpentine shapes should be preferred to straight interconnects as better gauge factors are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Table I.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  1. J. Stringer, T.M. Althagathi, C.C.W. Tse, V. Duong Ta, J.D. Shephard, E. Esenturk, C. Connaughton, T.J. Wasley, J. Li, R.W. Kay, and P.J. Smith: Integration of additive manufacturing and inkjet printed electronics: a potential route to parts with embedded multifunctionality. Manufacturing Rev. 3, 1–17 (2016).

    Article  Google Scholar 

  2. E. Sowade, E. Ramon, K. Yoti Mitra, C. Martínez-Domingo, M. Pedró, J. Pallarès, F. Loffredo, F. Villani, H.L. Gomes, L. Terés, and R.R. Baumann: All-inkjet-printed thin-film transistors: manufacturing process reliability by root cause analysis. Sci. R. 6, 33490–33415 (2016).

    CAS  Google Scholar 

  3. V. Correia, K.Y. Mitra, H. Castro, J.G. Rocha, E. Sowade, R.R. Baumann, and S. Lanceros-Mendez: Design and fabrication of multilayer inkjet-printed passive components for printed electronics circuit development. J. Manuf. Process. 31, 364–371 (2018).

    Article  Google Scholar 

  4. M. Borghetti, M. Serpelloni, E. Sardini, and S. Pandini: Mechanical behavior of strain sensors based on PEDOT:PSS and silvernanoparticles inks deposited on polymer substrate by inkjet printing. Sens. Actuators A 243, 71–80 (2016).

    Article  CAS  Google Scholar 

  5. N. Islam Khan, A.G. Maddaus, and E. Song: A low-cost inkjet-printed aptamer-based electrochemical biosensor for the selective detection of lysozyme. Bionsens. 8, 7–25 (2018).

    Article  Google Scholar 

  6. M. Gonzalez, F. Axisa, M. Vanden Bulcke, D. Brosteaux, B. Vandevelde, and J. Vanfleteren: Design of metal interconnects for stretchable electronic circuits. Micro. Reliab. 48, 825–832 (2008).

    Article  Google Scholar 

  7. S. Khan, L. Lorenzelli, and R. Dahiya: Technologies for printing sensors and electronics over large flexible substrates: a review. IEEE Sensors J. 15, 3164–3185 (2014).

    Article  Google Scholar 

  8. T. Cheng, Y. Wu, X. Shen, W. Lai, and W. Huang: Inkjet printed large-area flexible circuits: a simple methodology for optimizing the printing quality. J. Semicond. 39, 15001–15008 (2018).

    Article  Google Scholar 

  9. J. Jiang, B. Bao, M. Li, J. Sun, C. Zhang, Y. Li, F. Li, X. Yao, and Y. Song: Fabrication of transparent multilayer circuits by inkjet printing. Adv. Mater. 28, 1420–1426 (2016).

    Article  CAS  Google Scholar 

  10. Y. Kim, X. Ren, J.W. Kim, and H. Noh: Direct inkjet printing of micro-scale silver electrodes on polydimethylsiloxane (PDMS). Microchip. J. Micromech. Microeng. 24, 115010–10 (2014).

    Article  Google Scholar 

  11. J. Abu-Khalaf, R. Saraireh, S. Eisa, and A. Al-Halhouli: Experimental characterization of inkjet-printed stretchable circuits for wearable sensor applications. Sensors 18, 3476–3499 (2018).

    Article  Google Scholar 

  12. N. Bowden, W.T.S. Huck, K.E. Paul, and G.M. Whitesides: The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer. App. Phys. Lett. 75, 2557–2559 (1999).

    Article  CAS  Google Scholar 

  13. L. Guo and S.P. DeWeerth: Effective lift-off method for patterning high-density gold interconnects on an elastomeric substrate. Small 6, 2847–2852 (2010).

    Article  CAS  Google Scholar 

  14. S. Aziz, K. Go Bum, Y. Jin Yang, B. Yang, C.U. Kang, Y. Hoi Doh, K. Hyun Choi, and H. Chan Kim: Fabrication of ZnSn03 based humidity sensor onto arbitrary substrates by micro-Nano scale transfer printing. Sens. Actuators A. 246, 1–8 (2016).

    Article  CAS  Google Scholar 

  15. M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, and I. Park: Highly stretchable and sensitive strain sensor based on silvernanowire elastomer nano-composite. AcS Nano 8, 5154–5163 (2014).

    Article  CAS  Google Scholar 

  16. A. Cammarano, G. De Luca, and E. Amendola: Surface modification and adhesion improvement of polyester films. Cent. Eur. J. Chem. 11, 35–45 (2013).

    CAS  Google Scholar 

  17. T. Seifert, E. Sowade, F. Roscher, M. Wiemer, T. Gessner, and R.R. Baumann: Additive manufacturing technologies compared: morphology of deposits of silver ink using inkjet and aerosol jet printing. Ind. Eng. Chem. Res. 54, 769–779 (2015).

    Article  CAS  Google Scholar 

  18. E. Sowade, M. Polomoshnov, and R.R. Baumann: The design challenge in printing devices and circuits: influence of the orientation of print patterns in inkjet-printed electronics. Org. Electron. 37, 428–438 (2016).

    Article  CAS  Google Scholar 

  19. M.H. Madsen, N.A. Feidenhans, P. Hansen, J. Garnass, and K. Dirscherl: Accounting for PDMS shrinkage when replicating structures. J. Micromech. Microeng. 24, 127002–6 (2014).

    Article  CAS  Google Scholar 

  20. G.E. Bonacchini, C. Bossio, F. Greco, V. Mattoli, Y. Kim, G. Lanzani, and M. Caironi: tattoo-paper transfer as a versatile platform for all-printed organic edible electronics. Adv. Mater. 30, 1706091–8 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina Aurora Costa Angeli.

Supplementary material

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2019.10.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angeli, M.A.C., Cramer, T., Fraboni, B. et al. Reliability of inkjet printed silver nanoparticle interconnects on deformable substrates tested through an electromechanical in-situ technique. MRS Communications 9, 129–136 (2019). https://doi.org/10.1557/mrc.2019.10

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2019.10

Navigation