Skip to main content
Log in

Synthesis of nanoparticles in carbon arc: measurements and modeling

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

This work presents a study of the region of nanoparticle growth in an atmospheric pressure carbon arc. The nanoparticles are detected using the planar laser-induced incandescence technique. The measurements revealed large clouds of nanoparticles in the arc periphery bordering the region with a high density of diatomic carbon molecules. Two-dimensional computational fluid dynamic simulations of the arc combined with thermodynamic modeling show that this is due to the interplay of the condensation of carbon molecular species and the convection flow pattern. These results show that the nanoparticles are formed in the colder, peripheral regions of the arc and describe the parameters necessary for coagulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. I.R. Ariyarathna, R.M.P.I. Rajakaruna, and D. Nedra Karunaratne: The rise of inorganic nanomaterial implementation in food applications. Food Control 77, 251–259 (2017).

    Article  CAS  Google Scholar 

  2. R. Dastjerd and M. Montazer: A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surf. B 79, 5–18 (2010).

    Article  CAS  Google Scholar 

  3. H. Chu, L. Wei, R. Cui, J. Wang, and Y. Li: Carbon nanotubes combined with inorganic nanomaterials: preparations and applications. Coord. Chem. Rev. 254, 1117–1134 (2010).

    Article  CAS  Google Scholar 

  4. S.E. Lohse and C.J. Murphy: Applications of colloidal inorganic nanoparticles: from medicine to energy. J. Am. Chem. Soc. 134, 15607–15620 (2012).

    Article  CAS  Google Scholar 

  5. T. Kim and T. Hyeon: Applications of inorganic nanoparticles as therapeutic agents. Nanotechnology 25, 012001–012015 (2014).

    Article  CAS  Google Scholar 

  6. C. Lo Porto, F. Palumbo, G. Palazzoa, and P. Favia: Direct plasma synthesis of nano-capsules loaded with antibiotics. Polym. Chem. 8, 1746–1749 (2017).

    Article  CAS  Google Scholar 

  7. P. Heyse, A. Van Hoeck, M.B.J. Roeffaers, J.P. Raffin, A. Steinbuchel, T. Stoveken, J. Lammertyn, P. Verboven, P.A. Jacobs, J. Hofkens, S. Paulussen, and B.F. Sels: Exploration of atmospheric pressure plasma nanofilm technology for straightforward bio-active coating deposition: enzymes, plasmas and polymers, an elegant synergy. Plasma Process. Polym. 8, 965–974 (2011).

    Article  CAS  Google Scholar 

  8. K. Koga, X. Dong, S. Iwashita, U. Czarnetzki, and M. Shiratani: Formation of carbon nanoparticle using Ar + CH4 high pressure nanosecond discharges. J. Phys Conf. Ser. 518, 012020–012026 (2014).

    Article  CAS  Google Scholar 

  9. U. Kortshagen, R. Mohan Sankaran, R. Pereira, S. Girshick, J. Wu, and E. Aydil: Nonthermal plasma synthesis of nanocrystals: fundamental principles, materials, and applications. Chem. Rev. 116, 11061–11127 (2016).

    Article  CAS  Google Scholar 

  10. A. Rai, K. Park, L. Zhou, and M.R. Zachariah: Understanding the mechanism of aluminum nanoparticle oxidation. Combust. Theor. Model. 10, 843–859 (2006).

    Article  CAS  Google Scholar 

  11. K. Park, D. Lee, A. Rai, D. Mukherjee, and M.R. Zachariah: Size-resolved kinetic measurements of aluminum nanoparticle oxidation with single particle mass spectrometry. J. Phys. Chem. B 109, 7290–7299 (2005).

    Article  CAS  Google Scholar 

  12. N. Arora and N.N. Sharma: Arc discharge synthesis of carbon nanotubes: comprehensive review. Diam. Relat. Mater. 50, 135–150 (2014).

    Article  CAS  Google Scholar 

  13. S. Iijima: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).

    Article  CAS  Google Scholar 

  14. Y. Ando and X. Zhao: Synthesis of carbon nanotubes by arc-discharge method. New Diam. Front. Carbon Technol. 16, 123–137 (2006).

    CAS  Google Scholar 

  15. S. Iijima and T. Ichihashi: Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603–606 (1993).

    Article  CAS  Google Scholar 

  16. D. Bethune, C. Kiang, M. De Vries, G. Gorman, R. Savoy, J. Vasquez, and R. Beyers: Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363, 605–607 (1993).

    Article  CAS  Google Scholar 

  17. C. Journet, W.K. Maser, P. Bernier, A. Loiseau, M. Lamy de la Chapelle, S. Lefrant, P. Deniard, R. Leek, and J.E. Fischerk: Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388, 756–759 (1997).

    Article  CAS  Google Scholar 

  18. X. Fang, A. Shashurin, G. Teel, and M. Keidar: Determining synthesis region of the single wall carbon nanotubes in arc plasma volume. Carbon N. Y. 107, 273–280 (2016).

    Article  CAS  Google Scholar 

  19. J. Ng and Y. Raitses: Self-organizational processes in the carbon arc for nanosynthesis. J. Appl. Phys. 117, 063303–063307 (2015).

    Article  CAS  Google Scholar 

  20. A. Shashurin and M. Keidar: Synthesis of 2D materials in arc plasmas. J. Phys. D, Appl. Phys. 48, 314007–314016 (2015).

    Article  CAS  Google Scholar 

  21. J. Ng and Y. Raitses: Role of the cathode deposit in the carbon arc for the synthesis of nanomaterials. Carbon N. Y. 77, 80–89 (2014).

    Article  CAS  Google Scholar 

  22. B. Gökce, V. Amendola, and S. Barcikowski: Opportunities and challenges for laser synthesis of colloids. Chem. Phys. Chem. 18, 983–985 (2017).

    Article  CAS  Google Scholar 

  23. S. Hu, C. Melton, and D. Mukherjee: A facile route for the synthesis of nanostructured oxides and hydroxides of cobalt using laser ablation synthesis in solution (LASIS). Phys. Chem. Chem. Phys. 16, 24034–24044 (2014).

    Article  CAS  Google Scholar 

  24. M.S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio: Raman spectroscopy of carbon nanotubes. Phys. Rep. 409, 47–49 (2005).

    Article  Google Scholar 

  25. M. Peña-Álvarez, E. del Corro, F. Langua, V.G. Baonza, and M. Taravillo: Morphological changes in carbon nanohorns under stress: a combined Raman spectroscopy and TEM study. RSC Adv. 6, 49543–49550 (2016).

    Article  CAS  Google Scholar 

  26. A.C. Ferrari and J. Robertson: Raman spectroscopy of amorphous, nanostructures, diamond-like carbon, and nanodiamond. Philos. Trans. R. Soc. Lond. A 362, 2477–2512 (2004).

    Article  CAS  Google Scholar 

  27. Y. Saito, M. Okuda, and T. Koyama: Carbon nanocapsules and single-wall nanotubes formed by arc evaporation. Surf. Rev. Lett. 3, 863–867 (1996).

    Article  CAS  Google Scholar 

  28. K. Williams, M. Tachibana, J. Allen, L. Grigorian, S. Cheng, S. Fang, G.U. Sumanasekera, A.L. Loper, J.H. Williams, and P.C. Eklund: Single-wall carbon nanotubes from coal. Chem. Phys. Lett. 310, 31–37 (1999).

    Article  CAS  Google Scholar 

  29. S. Farhat, M. Lamy de La Chapelle, A. Loiseau, C.D. Scott, S. Lefrant, C. Journet, and P. Bernier: Diameter control of single-walled carbon nanotubes using argon-helium mixture gases. J. Chem. Phys. 115, 6752–6759 (2001).

    Article  CAS  Google Scholar 

  30. V.V. Grebenyukov, E.D. Obraztsova, A.S. Pozharov, N.R. Arutyunyan, A.A. Romeikov, and I.A. Kozyrev: Arc-synthesis of single-walled carbon nanotubes in nitrogen atmosphere. Fullerenes Nanotubes Carbon Nanostruct. 16, 330–334 (2008).

    Article  CAS  Google Scholar 

  31. R. Das, Z. Shahnavaz, Md Eaqub Ali, M. Moinul Islam, and S. Bee Abd Hamid: Can we optimize arc discharge and laserablation for well-controlled carbon nanotube synthesis? Nanoscale Res. Lett. 11, 510–533 (2016).

    Article  CAS  Google Scholar 

  32. S. Yatom, J. Bak, A. Khrabryi, and Y. Raitses: Detection of nanoparticles in carbon arc discharge with laser-induced incandescence. Carbon N. Y. 117, 154–162 (2017).

    Article  CAS  Google Scholar 

  33. A. Gerakis, Y.W. Yeh, M.N. Shneider, J.M. Mitrani, B.C. Stratton, and Y. Raitses: Four-wave-mixing approach to in situ detection of nanoparticles. Phys. Rev. Appl. 9, 014031–014039 (2018).

    Article  CAS  Google Scholar 

  34. V. Vekselman, M. Feurer, T. Huang, B. Stratton, and Y. Raitses: Complex structure of the carbon arc discharge for synthesis of nanotubes. Plasma Sources Sci. Technol. 26, 065019–065030 (2017).

    Article  CAS  Google Scholar 

  35. V. Vekselman, A. Khrabry, I. Kaganovich, B. Stratton, R.S. Selinsky, and Y. Raitses: Quantitative imaging of carbon dimer precursor for nanomaterial synthesis in the carbon arc. Plasma Sources Sci. Technol. 27, 025008–025021 (2018).

    Article  CAS  Google Scholar 

  36. H.A. Michelsen, C. Schulz, G.J. Smallwood, and S. Will: Laser-induced incandescence: particulate diagnostics for combustion, atmospheric, and industrial applications. Prog. Energy Combust. Sci. 51, 2–48 (2015).

    Article  Google Scholar 

  37. W.W. Stoffels, E. Stoffels, G.M.W. Kroesen, and F.J. de Hoog: Detection of dust particles in the plasma by laser-induced heating. J. Vac. Sci. Technol. A 14, 588–594 (1996).

    Article  CAS  Google Scholar 

  38. G.S. Eom, C.W. Park, Y.H. Shin, K.H. Chung, S. Park, W. Choe, and J.W. Hahn: Size determination of nanoparticles in low-pressure plasma with laser-induced incandescence technique. Appl. Phys. Lett. 83, 1261–1263 (2003).

    Article  CAS  Google Scholar 

  39. F.M.J.H. van de Wetering, W. Oosterbeek, J. Beckers, S. Nijdam, E. Kovačević, and J. Berndt: Laser-induced incandescence applied to dusty plasmas. J. Phys. D, Appl. Phys. 49, 295206–295216 (2016).

    Article  CAS  Google Scholar 

  40. J. Menser, K. Daun, T. Dreier, and C. Schulz: Laser-induced incandescence from laser-heated silicon nanoparticles. Appl. Phys. B 122, 277–293 (2016).

    Article  CAS  Google Scholar 

  41. M.N. Shneider: Carbon nanoparticles in the radiation field of the stationary arc discharge. Phys. Plasmas 22, 073303–073307 (2015).

    Article  CAS  Google Scholar 

  42. J.M. Mitrani, M.N. Shneider, B.C. Stratton, and Y. Raitses: Modeling thermionic emission from laser-heated nanoparticles. Appl. Phys. Lett. 108, 054101–054105 (2016).

    Article  CAS  Google Scholar 

  43. S. Gershman and Y. Raitses: Unstable behavior of anodic arc discharge for synthesis of nanomaterials. J. Phys. D, Appl. Phys. 49, 345201–3452010 (2016).

    Article  CAS  Google Scholar 

  44. A. Khrabry, I.D. Kaganovich, A. Khodak, and V. Nemchinsky: Self-consistent two-dimensional nonequilibrium numerical simulations of carbon arc discharge, in preparation as of February 2018.

    Google Scholar 

  45. A. Khrabry, I. Kaganovich, V. Nemchinsky, and A. Khodak: Investigation of the short argon arc with hot anode. I. numerical simulations of non-equilibrium effects in the near-electrode regions. Phys. Plasmas 25, 013521–013537 (2018).

    Article  CAS  Google Scholar 

  46. N.A. Almeida, M.S. Benilov, and G.V. Naidis: Unified modelling of near-cathode plasma layers in high-pressure arc discharges. J. Phys. D, Appl. Phys. 41, 245201–245227 (2008).

    Article  CAS  Google Scholar 

  47. A. Khrabry, I. Kaganovich, V. Nemchinsky, and A. Khodak: Investigation of the short argon arc with hot anode. II. Analytical model. Phys. Plasmas 25, 013522–013542 (2018).

    Article  CAS  Google Scholar 

  48. W.Z. Wang, M.Z. Rong, A.B. Murphy, Y. Wu, J.W. Spencer, J.D. Yan, and M.T.C. Fang: Thermophysical properties of carbon-argon and carbon-helium plasmas. J. Phys. D, Appl. Phys. 44, 295202–295212 (2011).

    Article  CAS  Google Scholar 

  49. H.O. Pierson: Handbook of Carbon, Graphite, Diamond and Fullerenes (Noyes Publications, Park Ridge, NJ, 1993), ISBN: 0-8155-1339-9.

    Google Scholar 

  50. A.J. Fetterman, Y. Raitses, and M. Keidar: Enhanced ablation of small anodes in a carbon nanotube arc plasma. Carbon N. Y. 46, 1322–1326 (2008).

    Article  CAS  Google Scholar 

  51. B.M. Smirnov. Cluster Processes in Gases and Plasmas (Wiley-VCH Verlag GmbH), Weinheim, Germany, 2010, 442 pages.

    Book  Google Scholar 

  52. S.A. Davari and D. Mukherjee: Kinetic Monte Carlo simulation for homogeneous nucleation of metal nanoparticles during vapor phase synthesis. AIChE J. 64, 18–28 (2017).

    Article  CAS  Google Scholar 

  53. P. Kappler, P. Ehrburger, J. Lahaye, and J.-B. Donnet: Fine carbon particle formation by carbon-vapor condensation. J. Appl. Phys. 50, 308–318 (1979).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Michael Schneider and Dr. Ken Hara for fruitful discussions and to A. Merzhevskiy for technical assistance. LII measurements and the thermodynamic simulations were supported by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. The arc modeling was supported by the US DOE Office of Science, Fusion Energy Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shurik Yatom.

Supplementary material

Supplementary material

The supplementary material for this article can be found at {rs|https://doi.org/10.1557/mrc.2018.91|url|}

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yatom, S., Khrabry, A., Mitrani, J. et al. Synthesis of nanoparticles in carbon arc: measurements and modeling. MRS Communications 8, 842–849 (2018). https://doi.org/10.1557/mrc.2018.91

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.91

Navigation