Skip to main content
Log in

First demonstration of “Leaky Integrate and Fire” artificial neuron behavior on (V0.95Cr0.05)2O3 thin film

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

A great challenge in the field of neurocomputing is to mimic the brain behavior by implementing artificial synapses and neurons directly in hardware. This work shows that a Leaky Integrate and Fire (LIF) artificial neuron can be realized with a two-terminal device made of Mott insulator thin films. Polycrystalline thin films of the well-known Mott insulator oxide (V0.95Cr0.05)2O3 were deposited by magnetron sputtering and patterned with micron-scale TiN electrodes. These devices exhibit a volatile resistive switching and a remarkable LIF behavior under a train of pulses suggesting that LIF artificial neurons may be realized from (V0.95Cr0.05)2O3 thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. A.K. Jain, J. Mao, and K.M. Mohiuddin: Artificial neural networks: a tutorial. Computer (Long. Beach. Calif) 29, 31 (1996).

    Google Scholar 

  2. L. Alvado, J. Tomas, S. Saïghi, S. Renaud, T. Bal, A. Destexhe, and G. Le Masson: Hardware Computation of Conductance-Based Neuron Models. Neurocomputing 58-60, 109 (2004).

    Article  Google Scholar 

  3. D. Baptista, S. Abreu, F. Freitas, R. Vasconcelos, and F. Morgado-Dias: A survey of software and hardware use in artificial neural networks. Neural Comput. Appl. 23, 591 (2013).

    Article  Google Scholar 

  4. J.J. Yang, D.B. Strukov, and D.R. Stewart: Memristive devices for computing. Nat. Nanotechnol. 8, 13 (2013).

    Article  CAS  Google Scholar 

  5. P.A. Merolla, J.V. Arthur, R. Alvarez-Icaza, A.S. Cassidy, J. Sawada, F. Akopyan, B.L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S.K. Esser, R. Appuswamy, B. Taba, A. Amir, M.D. Flickner, W.P. Risk, R. Manohar, and D.S. Modha: Artificial brains. a million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345, 668 (2014).

    Article  CAS  Google Scholar 

  6. G. Indiveri, B. Linares-Barranco, T.J. Hamilton, A. van Schaik, R. Etienne-Cummings, T. Delbruck, S.-C. Liu, P. Dudek, P. Häfliger, S. Renaud, J. Schemmel, G. Cauwenberghs, J. Arthur, K. Hynna, F. Folowosele, S. Saighi, T. Serrano-Gotarredona, J. Wijekoon, Y. Wang, and K. Boahen: Neuromorphic silicon neuron circuits. Front. Neurosci. 5, 0 (2011).

    Google Scholar 

  7. D.B. Strukov, G.S. Snider, D.R. Stewart, and R.S. Williams: The missing Memristor found. Nature 453, 80 (2008).

    Article  CAS  Google Scholar 

  8. L. Chua: Resistance switching memories are memristors. Appl. Phys. A 102, 765 (2011).

    Article  CAS  Google Scholar 

  9. S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder, and W. Lu: Nanoscale Memristor device as synapse in neuromorphic systems. Nano Lett. 10, 1297 (2010).

    Article  CAS  Google Scholar 

  10. D. Kuzum, S. Yu, and H.-S. Philip Wong: Synaptic electronics: materials, devices and applications. Nanotechnology 24, 382001 (2013).

    Article  Google Scholar 

  11. Y. Yang and W. Lu: Nanoscale resistive switching devices: mechanisms and modeling. Nanoscale 5, 10076 (2013).

    Article  CAS  Google Scholar 

  12. D.S. Jeong, I. Kim, M. Ziegler, and H. Kohlstedt: Towards artificial neurons and synapses: a materials point of view. RSC Adv. 3, 3169 (2013).

    Article  CAS  Google Scholar 

  13. V. Eyert: The metal-insulator transition of NbO2: an embedded Peierls instability. EPL Europhys. Lett. 58, 851 (2002).

    Article  CAS  Google Scholar 

  14. I. Valov: Redox-based resistive switching memories (ReRAMs): electrochemical systems at the atomic scale. ChemElectroChem 1, 26 (2014).

    Article  Google Scholar 

  15. M.D. Pickett, G. Medeiros-Ribeiro, and R.S. Williams: A scalable Neuristor built with Mott Memristors. Nat. Mater. 12, 114 (2012).

    Article  Google Scholar 

  16. A. Mehonic and A.J. Kenyon: Emulating the electrical activity of the neuron using a silicon oxide RRAM cell. Front. Neurosci. 10, 57 (2016).

    Article  Google Scholar 

  17. J. Torrejon, M. Riou, F.A. Araujo, S. Tsunegi, G. Khalsa, D. Querlioz, P. Bortolotti, V. Cros, K. Yakushiji, A. Fukushima, H. Kubota, S. Yuasa, M.D. Stiles, and J. Grollier: Neuromorphic computing with nanoscale spintronic oscillators. Nature 547, 428 (2017).

    Article  CAS  Google Scholar 

  18. P. Stoliar, J. Tranchant, B. Corraze, E. Janod, M.-P. Besland, F. Tesler, M. Rozenberg, and L. Cario: A leaky-integrate-and-fire neuron analog realized with a Mott insulator. Adv. Funct. Mater. 27, 1604740 (2017).

    Article  Google Scholar 

  19. M. Querré, E. Janod, L. Cario, J. Tranchant, B. Corraze, V. Bouquet, S. Deputier, S. Cordier, M. Guilloux-Viry, and M.-P. Besland: Metal-insulator transitions in (V1−XCrx)2O3 thin films deposited by reactive direct current magnetron co-sputtering. Thin Solid Films 617, 56 (2016).

    Article  Google Scholar 

  20. M. Querré, J. Tranchant, B. Corraze, S. Cordier, V. Bouquet, S. Députier, M. Guilloux-Viry, M.-P. Besland, E. Janod, and L. Cario: Non-volatile resistive switching in the Mott insulator (V1−xCrx)2O3. Phys. B, Condens. Matter 536, 327 (2017).

    Article  Google Scholar 

  21. V. Guiot, L. Cario, E. Janod, B. Corraze, V. Ta Phuoc, M. Rozenberg, P. Stoliar, T. Cren, and D. Roditchev: Avalanche breakdown in GaTa4Se8−xTex narrow-gap Mott insulators. Nat. Commun. 4, 1722 (2013).

    Article  CAS  Google Scholar 

  22. F. Pan, S. Gao, C. Chen, C. Song, and F. Zeng: Recent progress in resistive random access memories: materials, switching mechanisms, and performance. Mater. Sci. Eng. R, Rep. 83, 1 (2014).

    Article  Google Scholar 

  23. P. Stoliar, L. Cario, E. Janod, B. Corraze, C. Guillot-Deudon, S. Salmon-Bourmand, V. Guiot, J. Tranchant, and M. Rozenberg: Universal electric-field-driven resistive transition in narrow-gap Mott insulators. Adv. Mater. 25, 3222 (2013).

    Article  CAS  Google Scholar 

  24. E. Janod, J. Tranchant, B. Corraze, M. Querré, P. Stoliar, M. Rozenberg, T. Cren, D. Roditchev, V.T. Phuoc, M.-P. Besland, and L. Cario: Resistive switching in Mott insulators and correlated systems. Adv. Funct. Mater. 25, 6287 (2015).

    Article  CAS  Google Scholar 

  25. L. Cario, C. Vaju, B. Corraze, V. Guiot, and E. Janod: Electric-field-induced resistive switching in a family of Mott insulators: towards non-volatile Mott-RRAM memories. Adv. Mater. 22, 5193 (2010).

    Article  CAS  Google Scholar 

  26. P. Stoliar, P. Diener, J. Tranchant, B. Corraze, B. Brière, V. Ta-Phuoc, N. Bellec, M. Fourmigué, D. Lorcy, E. Janod, and L. Cario: Resistive switching induced by electric pulses in a single-component molecular Mott insulator. J. Phys. Chem. C 119, 2983 (2015).

    Article  CAS  Google Scholar 

  27. N. Brunel and M.C.W. van Rossum: Lapicque’s 1907 paper: from frogs to integrate-and-fire. Biol. Cybern. 97, 337 (2007).

    Article  Google Scholar 

  28. L. Lapicque: Quantitative investigations of electrical nerve excitation treated as polarization. 1907. Biol. Cybern. 97, 341 (2007).

    Article  Google Scholar 

  29. P. Stoliar, M. Rozenberg, E. Janod, B. Corraze, J. Tranchant, and L. Cario: Nonthermal and purely electronic resistive switching in a Mott memory. Phys. Rev. B 90, 045146 (2014).

    Article  Google Scholar 

  30. C. Vaju, L. Cario, B. Corraze, E. Janod, V. Dubost, T. Cren, D. Roditchev, D. Braithwaite, and O. Chauvet: Electric-pulse-driven electronic phase separation, insulator-metal transition, and possible superconductivity in a Mott insulator. Adv. Mater. 20, 2760 (2008).

    Article  CAS  Google Scholar 

  31. J. Tranchant, E. Janod, B. Corraze, P. Stoliar, M. Rozenberg, M.-P. Besland, and L. Cario: Control of resistive switching in AM4Q8 narrow Gap Mott insulators: a first step towards neuromorphic applications: control of resistive switching in AM4Q8 narrow gap Mott insulators. Phys. Status Solidi A 212, 239 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the “Region Pays de la Loire” for funding the present work in the framework of the “Pari scientifique Neuro-Mott”. P. S. acknowledges the support of the Spanish Ministry of Economy through the Ramón y Cajal (grant no. RYC-2012-01031).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Coline Adda or Laurent Cario.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adda, C., Cario, L., Tranchant, J. et al. First demonstration of “Leaky Integrate and Fire” artificial neuron behavior on (V0.95Cr0.05)2O3 thin film. MRS Communications 8, 835–841 (2018). https://doi.org/10.1557/mrc.2018.90

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.90

Navigation