Skip to main content
Log in

Effect of dispersion on metal-insulator-metal infrared absorption resonances

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Metal-insulator-metal (MIM) resonant absorbers comprise a conducting ground plane, a thin dielectric, and thin separated metal top-surface structures. The dielectric SiO2 strongly absorbs near 9 μm wavelength and has correspondingly strong long-wave-infrared (LWIR) dispersion for the refractive index. This dispersion results in multiple absorption resonances spanning the LWIR, which can enhance broad-band sensitivity for LWIR bolometers. Similar considerations apply to silicon nitride Si3N4. TiO2 and AlN have comparatively low dispersion and give simple single LWIR resonances. These dispersion-dependent features for infrared MIM devices are demonstrated by experiment, electrodynamic simulation, and an analytic model based on standing waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. E.M. Smith, J. Nath, J. Ginn, R.E. Peale, and D. Shelton: Responsivity improvements for a vanadium oxide microbolometer using subwavelength resonant absorbers. Proc. SPIE 9819, 98191Q (2016).

    Article  Google Scholar 

  2. V.J. Gokhale, P.D. Myers, and M. Rais-Zadeh: Subwavelength plasmonic absorbers for spectrally selective resonant infrared detectors. Proc. IEEE Sensors Conf. (2-5 November 2014).

    Google Scholar 

  3. J. Nath, S. Modak, I. Rezadad, D. Panjwani, F. Rezaie, J.W. Cleary, and R.E. Peale: Far-infrared absorber based on standing-wave resonances in metal-dielectric-metal cavity. Opt. Express 23, 20366 (2015).

    Article  CAS  Google Scholar 

  4. J. Nath, D. Panjwani, F. Khalilzadeh-Rezaie, M. Yesiltas, E.M. Smith, J.C. Ginn, D.J. Shelton, C. Hirschmugl, J.W. Cleary, and R.E. Peale: Infra-red spectral microscopy of standing-wave resonances in single metal-dielectric-metal thin-film cavity. Proc. SPIE 9544, 95442M (2015).

    Google Scholar 

  5. A. Lefebvre, D. Costantini, I. Doyen, Q. Lévesque, E. Lorent, D. Jacolin, J-J. Greffet, S. Boutami, and H. Benisty: CMOS compatible metal-insulator-metal plasmonic perfect absorbers. Opt. Mater. Express 6, 2389 (2016).

    Article  CAS  Google Scholar 

  6. J. Mason, S. Smith, and D. Wasserman: Strong absorption and selective thermal emission from a midinfrared metamaterial. Appl. Phys. Lett. 98, 241105 (2011).

    Article  Google Scholar 

  7. J. Park, J. Kang, X. Liu, and M.L. Brongersma: Electrically tunable Epsilon-NearZero (ENZ) metafilm absorbers. Sci. Rep. 5, 15754 (2015).

    Article  CAS  Google Scholar 

  8. J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores, and W.T. Masselink: Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride. Appl. Opt. 51, 6789 (2012).

    Article  CAS  Google Scholar 

  9. P. Bouchon, C. Koechlin, F. Pardo, R. Haïdar, and J-L. Pelouard: Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas. Opt. Lett. 37, 241105 (2012).

    Article  Google Scholar 

  10. J. Hendrickson, S. Vangala, R. Gibson, C. Dass, K. Leedy, D. Walker, J. Cleary, and J. Guo: Strong coupling of epsilon-near-zero modes in deep sub-λ nanofilms to gap plasmon modes. In preparation for Nature Photonics (2018).

    Google Scholar 

  11. B. Zhang, J. Hendrickson, and J. Guo: Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures. J. Opt. Soc. Am. B 30, 656 (2013).

    Article  Google Scholar 

Download references

Acknowledgments

University of Central Florida authors except Janardan Nath received partial support from AFRL contract FA8650-16-C-1738. Justin Cleary and Evan Smith acknowledge support from the Air Force Office of Scientific Research (Program Manager Dr. Gernot Pomrenke) under award number FA9550-15RYCOR162.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seth R. Calhoun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calhoun, S.R., Lowry, V.C., Stack, R. et al. Effect of dispersion on metal-insulator-metal infrared absorption resonances. MRS Communications 8, 830–834 (2018). https://doi.org/10.1557/mrc.2018.88

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.88

Navigation