Skip to main content
Log in

Resonant thermoelectric transport in atomic chains with Fano defects

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Atomic clusters attached to a low-dimensional system, called Fano defects, produce rich wave interferences. In this work, we analytically found an enhanced thermoelectric figure-of-merit (Z7) in periodic atomic chains with Fano defects, compared with those without such defects. We further study self-assembled DNA-like systems with periodic and quasiperiodically placed Fano defects by using a real-space renormalization method developed for the Kubo-Greenwood formula, in which tight-binding and Born models are respectively used for the electric and lattice thermal conductivities. The results reveal that the quasiperiodicity could be another Z7”-improving factor, whose long-range disorder inhibits low-frequency acoustic phonons insensitive to local defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Table I
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. C. Cheng and H. J. Fan: Branched nanowires: Synthesis and energy applications. Nano. Today. 7, 327–343 (2012).

    Article  CAS  Google Scholar 

  2. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar: Fano resonances in nanoscale structures. Rev. Mod. Phys. 82, 2257–2298 (2010).

    Article  CAS  Google Scholar 

  3. C. Ramirez and V. Sanchez: Kubo conductivity of macroscopic systems with Fano defects for periodic and quasiperiodic cases by means of renormalization methods in real space. Phys. Status Solidi A 210, 2431–2438 (2013).

    Article  CAS  Google Scholar 

  4. C. Wang, C. Ramirez, F. Sanchez, and V. Sanchez: Ballistic conduction in macroscopic non-periodic lattices. Phys. Status Solidi B 252, 1370–1381 (2015).

    Article  CAS  Google Scholar 

  5. V. Sanchez and C. Wang: Improving the ballistic AC conductivity through quantum resonance in branched nanowires. Philos. Mag. 95, 326–333 (2015).

    Article  CAS  Google Scholar 

  6. E. Macia: DNA-based thermoelectric devices: a theoretical prospective. Phys. Rev. B 75, 035130 (2007).

    Article  Google Scholar 

  7. E. Macia-Barber: Thermoelectric Materials - Advances and Applications (CRC Press of Taylor & Francis Group, Boca Raton USA, 2015) p. 38.

    Book  Google Scholar 

  8. T. M. Tritt (ed.): Thermal Conductivity - Theory, Properties and Applications (Kluwer Academic-Plunum Pub., New York, 2004) p. 3.

    Book  Google Scholar 

  9. H. H. Fu, L. Gu, D. D. Wu, and Z. Q. Zhang: Enhancement of the thermoelectric figure of merit in DNA-like systems induced by Fano and Dicke effects. Phys. Chem. Chem. Phys. 17, 11077–11087 (2015).

    Article  CAS  Google Scholar 

  10. T. Markussen: Surface disordered Ge-Si core-shell nanowires as efficient thermoelectric materials. Nano Lett. 12, 4698–4704 (2012).

    Article  CAS  Google Scholar 

  11. E. N. Economou: Green’s Functions in Quantum Physics, 3rd ed. (Springer-Verlag, Berlin, 2006) p. 6.

    Book  Google Scholar 

  12. J. K. Flicker and P. L. Leath: Lattice thermal conductivity in high-concentration mixed crystals. Phys. Rev. B 7, 2296–2305 (1973).

    Article  Google Scholar 

  13. P. Alfaro, R. Cisneros, M. Bizarro, M. Cruz-lrisson, and C. Wang: Raman scattering by confined optical phonons in Si and Ge nanostructures. Nanoscale. 3, 1246–1251 (2011).

    Article  CAS  Google Scholar 

  14. C. Wang, F. Salazar, and V. Sanchez: Renormalization plus convolution method for atomic-scale modeling of electrical and thermal transport in nanowires. Nano Lett. 8, 4205–4209 (2008).

    Article  CAS  Google Scholar 

  15. V. Sanchez and C. Wang: Application of renormalization and convolution methods to the Kubo-Greenwood formula in multidimensional Fibonacci systems. Phys. Rev. B 70, 144207 (2004).

    Article  Google Scholar 

  16. A. Nandy, B. Pal, and A. Chakrabarti: Tight-binding chains with off-diagonal disorder: Bands of extended electronic states induced by minimal quasi-one-dimensionality. EPL-Europhys. Lett. 115, 37004 (2016).

    Article  Google Scholar 

  17. J. C. Cuevas and E. Scheer: Molecular Electronics: An Introduction to Theory and Experiment (World Scientific Publishing, Singapore, 2010) P. 6.

    Book  Google Scholar 

  18. G. Cuniberti, L. Craco, D. Porath, and C. Dekker: Backbone-induced semiconducting behavior in short DNA wires. Phys. Rev. 665, 241314 (2011).

    Google Scholar 

  19. G. Cuniberti, E. Macia, A. Rodriguez, and R. A. Römer: Tight-binding modeling of charge migration in DNA devices. In Charge Migration in DNA; T. Chakraborty ed.; Springer-Verlag, Berlin, 2007; p. 3.

    Google Scholar 

  20. A. M. Guo, S. J. Xiong, Z. Yang, and H. J. Zhu: Enhancement of transport in DNA-like systems induced by backbone disorder. Phys. Rev. E 78, 061922 (2008).

    Article  Google Scholar 

  21. A. M. Guo, Z. Yang, H. J. Zhu, and S. J. Xiong: Influence of backbone on the charge transport properties of G4-DNA molecules: a model-based calculation. J. Phys:. Condens. Matter 11, 065102 (2010).

    Google Scholar 

  22. Y. Li, L. Xiang, J. L. Palma, Y. Asai, and N. Tao: Thermoelectric effect and its dependence on molecular length and sequence in single DNA molecules. Nat. Commun. 7, 11294 (2016).

    Article  CAS  Google Scholar 

  23. C. Maffeo, T. T. M. Ngo, T. Ha, and A. Aksimentiev: A coarse-grained model of unstructured single-stranded DNA derived from atomistic simulation and single-molecule experiment. J. Chem. Theory Comput. 10, 2891–2896 (2014).

    Article  CAS  Google Scholar 

  24. M. Krisch, A. Mermet, H. Grimm, V. T. Forsyth, and A. Rupprecht: Phonon dispersion of oriented DNA by inelastic x-ray scattering. Phys. Rev. E 73, 061909 (2006).

    Article  CAS  Google Scholar 

  25. L.V. Yakushevich: Nonlinear Physics of DNA, 2nd ed.; Wiley-VCH, Weinheim, 2004) p. 174.

    Book  Google Scholar 

  26. N. A. Kovaleva, L. I. Manevich, A. I. Musienko, and A. V. Savin: Low frequency localized oscillations of the DNA double strand. Polym. Sci. Ser. A 51, 833–847 (2009).

    Article  Google Scholar 

  27. J. E. Gonzalez, V. Sanchez, and C. Wang: Improving thermoelectric properties of nanowires through inhomogeneity. J. Electron. Mater. 46, 2724–2736 (2017).

    Article  CAS  Google Scholar 

  28. Y. Tian, M. R. Sakr, J. M. Kinder, D. Liang, M. J. MacDonald, R. L. J. Qiu, H.-J. Gao, and X. P. A. Gao: One-dimensional quantum confinement effect modulated thermoelectric properties in InAs nanowires. Nano Lett 12, 6492–6497 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been partially supported by CONACyT-252943, UNAM-PAPIIT-IN114916 and UNAM-PAPIIT-IN116317. Computations were performed at Miztli of DGTIC-UNAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chumin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eduardo Gonzalez, J., Sanchez, V. & Wang, C. Resonant thermoelectric transport in atomic chains with Fano defects. MRS Communications 8, 248–256 (2018). https://doi.org/10.1557/mrc.2018.84

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.84

Navigation