Skip to main content
Log in

Dynamic optical properties of gold nanoparticles/cholesteric liquid crystal arrays

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

A thermoresponsive large-area plasmonic architecture, made from randomly distributed gold nanoparticles (GNPs) located at the substrate interface of a cholesteric liquid crystal (CLC) cell, is fabricated and thoroughly characterized. A photo-thermal heating effect due to the localized plasmonic resonance (LPR) mechanism is generated by pumping the GNP array with a resonant light beam. The photo-induced heat, propagating through the CLC layer, induces a gradual phase transition from the cholesteric to isotropic phase. Both the plasmonic and photonic properties of the system as both the selective reflection properties and frequency of the LPR are modulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. G.V. Viktor: The electrodynamics of substances with simultaneously negative values of ##IMG## [http://ej.iop.org/images/0038-5670/10/4/R04/toc_eps.gif] e and µ. Sov. Phys. Usp. 10, 509 (1968).

    Article  Google Scholar 

  2. A. Aubry, D.Y. Lei, A.I. Fernández-Domínguez, Y. Sonnefraud, S.A. Maier, and J.B. Pendry: Plasmonic light-harvesting devices over the whole visible spectrum. Nano Lett. 10, 2574 (2010).

    Article  CAS  Google Scholar 

  3. H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia: Tunable infrared plasmonic devices using graphene/insulator stacks. Nat. Nano 7, 330 (2012).

    Article  CAS  Google Scholar 

  4. X. Zhang and Z. Liu: Superlenses to overcome the diffraction limit. Nat. Mater. 7, 435 (2008).

    Article  CAS  Google Scholar 

  5. J.B. Pendry: Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966 (2000).

    Article  CAS  Google Scholar 

  6. M. Khorasaninejad and F. Capasso: Broadband multifunctional efficient meta-gratings based on dielectric waveguide phase shifters. Nano Lett. 15, 6709 (2015).

    Article  CAS  Google Scholar 

  7. J. Neu and M.H. Rahm: Metamaterial-Based, Gradient Index Beam Steerer for Terahertz Radiation, in CLEO: 2013 (Optical Society of America, San Jose, California, 2013), p. CM1J.3.

    Google Scholar 

  8. E. Hutter and J.H. Fendler: Exploitation of localized surface plasmon resonance. Adv. Mater. 16, 1685 (2004).

    Article  CAS  Google Scholar 

  9. L.M. Liz-Marzán: Nanometals: formation and color. Mater. Today 7, 26 (2004).

    Article  Google Scholar 

  10. A.O. Govorov and H.H. Richardson: Generating heat with metal nanoparticles. Nano Today 2, 30 (2007).

    Article  Google Scholar 

  11. L. De Sio, T. Placido, R. Comparelli, M. Lucia Curri, M. Striccoli, N. Tabiryan, and T.J. Bunning: Next-generation thermo-plasmonic technologies and plasmonic nanoparticles in optoelectronics. Prog. Quantum Electron. 41, 23 (2015).

    Article  Google Scholar 

  12. M.A. Noginov, G. Zhu, A.M. Belgrave, R. Bakker, V.M. Shalaev, E.E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner: Demonstration of a spacer-based nanolaser. Nature 460, 1110 (2009).

    Article  CAS  Google Scholar 

  13. S. Xiao, V.P. Drachev, A.V. Kildishev, X. Ni, U.K. Chettiar, H.-K. Yuan, and V.M. Shalaev: Loss-free and active optical negative-index metamaterials. Nature 466, 735 (2010).

    Article  CAS  Google Scholar 

  14. P. Holmström, L. Thylén, and A. Bratkovsky: Composite metal/quantum-dot nanoparticle-array waveguides with compensated loss. Appl. Phys. Lett. 97, 073110 (2010).

    Article  Google Scholar 

  15. X. Huang and M.A. El-Sayed: Plasmonic photo-thermal therapy (PPTT). Alex. J. Med. 47, 1 (2011).

    Article  CAS  Google Scholar 

  16. P.G. de Gennes: The Physics of Liquid Crystals (Clarendon Press, Oxford, 1974).

    Google Scholar 

  17. L. De Sio, R. Caputo, U. Cataldi, and C. Umeton: Broad band tuning of the plasmonic resonance of gold nanoparticles hosted in self-organized soft materials. J. Mater. Chem. 21, 18967 (2011).

    Article  Google Scholar 

  18. L. Pezzi, L. De Sio, A. Veltri, T. Placido, G. Palermo, R. Comparelli, M.L. Curri, A. Agostiano, N. Tabiryan, and C. Umeton: Photo-thermal effects in gold nanoparticles dispersed in thermotropic nematic liquid crystals. Phys. Chem. Chem. Phys. 17, 20281 (2015).

    Article  CAS  Google Scholar 

  19. O. Kurochkin, Y.K. Murugesan, T.P. Bennett, G. D’Alessandro, Y. Reznikov, B.J. Tang, G.H. Mehl, and M. Kaczmarek: Thermal optical non-linearity of nematic mesophase enhanced by gold nanoparticles - an experimental and numerical investigation. Phys. Chem. Chem. Phys. 18, 11503 (2016).

    Article  CAS  Google Scholar 

  20. A. Cunningham, S. Mühlig, C. Rockstuhl, and T. Bürgi: Coupling of plasmon resonances in tunable layered arrays of gold nanoparticles. J. Phys. Chem. C 115, 8955 (2011).

    Article  CAS  Google Scholar 

  21. U. Cataldi, R. Caputo, Y. Kurylyak, G. Klein, M. Chekini, C. Umeton, and T. Burgi: Growing gold nanoparticles on a flexible substrate to enable simple mechanical control of their plasmonic coupling. J. Mater. Chem. C 2, 7927 (2014).

    Article  CAS  Google Scholar 

  22. Information available at http://www.beamco.com (accessed December 20, 2017).

  23. G. Mie: Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. 330, 377 (1908).

    Article  Google Scholar 

  24. P.K. Jain, K.S. Lee, I.H. El-Sayed, and M.A. El-Sayed: Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J. Phys. Chem. B 110, 7238 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank Rankess Dominguez for the discussions and assistance. This research was partially supported by the Air Force Office of Scientific Research (AFOSR), Air Force Research Laboratory (AFRL), US Air Force, under grant FA9550-18-1-0038 (P. I. L. De Sio, EOARD 2017-2020) and the Materials and Manufacturing Directorate, AFRL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano De Sio.

Author contributions The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Author contributions The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Sio, L., Cataldi, U., Bürgi, T. et al. Dynamic optical properties of gold nanoparticles/cholesteric liquid crystal arrays. MRS Communications 8, 550–555 (2018). https://doi.org/10.1557/mrc.2018.80

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.80

Navigation