Skip to main content
Log in

Pressure effect on an exciton in a wurtzite AlN/GaN/AlN spherical core/shell quantum dot

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

We have studied the effect of hydrostatic pressure on the confined exciton in a spherical core-shell quantum dot. Using a simple variational approach under the framework of effective mass approximation, we have computed the excitonic binding energy as a function of the shell thickness under the applied hydrostatic pressure. Our results show that the ground state binding energy of exciton depends greatly on the shell thickness, which tends to the two-dimensional limit of 4RX, when the ratio a/b tends to unity. The numerical calculations also suggest that the applied hydrostatic pressure favors the attraction between electrons and holes so the excitonic binding energy increases when pressure increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Table I
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. A.R. Kortan, R. Hull, R.L. Opila, M.G. Bawendi, M.L. Steigerwald, P.J. Carroll, and L. Brus: Nucleation and growth of cadmium selenide on zinc sulfide quantum crystallite seeds, and vice versa, in inverse micelle media. J. Am. Chem. Soc. 112, 1327 (1990).

    Article  CAS  Google Scholar 

  2. H.S. Zhou, I. Honma, and H. Komiyama: Coated semiconductor nanoparticles; the cadmium sulfide/lead sulfide system’s synthesis and properties. J. Phys. Chem. 97, 895 (1993).

    Article  CAS  Google Scholar 

  3. A. Mews, A. Eychmuller, M. Giersig, D. Schooss, and H. Weller: Preparation, characterization, and photophysics of the quantum dot quantum well system cadmium sulfide/mercury sulfide/cadmium sulfide. J. Phys. Chem. 98, 934 (1994).

    Article  CAS  Google Scholar 

  4. J.W. Haus, H.S. Zhou, I. Honma, and H. Komiyana: Quantum confinement in semiconductor heterostructure nanometer-size particles. Phys. Rev. B 47, 1359 (1993).

    Article  CAS  Google Scholar 

  5. L. Spanhel, H. Weller, and A. Henglein: Photochemistry of semiconductor colloids. 22. Electron ejection from illuminated cadmium sulfide into attached titanium and zinc oxide particles. J. Am. Chem. Soc. 109, 6632 (1987).

    Article  CAS  Google Scholar 

  6. C.F. Hoener, K.A. Allan, A.J. Brad, A. Campion, M.A. Fox, T.E. Mallouk, S.E. Webber, and J.M. White: Demonstration of a shell-core structure in layered cadmium selenide-zinc selenide small particles by x-ray photoelectron and Auger spectroscopies. J. Phys. Chem. 96, 3812 (1992).

    Article  CAS  Google Scholar 

  7. G.B. Bryant: Theory for quantum-dot quantum wells: pair correlation and internal quantum confinement in nanoheterostructures. Phys. Rev. B 52, 16997 (1995).

    Article  CAS  Google Scholar 

  8. J.M. Ferreyra and C.R. Proetto: Excitons in inhomogeneous quantum dots. Phys. Rev. B 57, 9061 (1998).

    Article  CAS  Google Scholar 

  9. J. El Khamkhami, E. Feddi, E. Assaidc, F. Dujardind, B. Stèbè, and J. Diouri: Binding energy of excitons in inhomogeneous quantum dots under uniform electric field. Physica E 15, 99–106 (2002).

    Article  Google Scholar 

  10. P.Y. Yu and M. Cordona: Fundamentals of Semiconductors (Springer, Berlin, 1998).

    Google Scholar 

  11. S.H. Ha and S.L. Ban: Binding energies of excitons in a strained wurtzite GaN/AlGaN quantum well influenced by screening and hydrostatic pressure. J. Phys. Condens. Matter. 20, 085218 (2008).

    Article  Google Scholar 

  12. N. Arunachalama, A.J. Peter, and C.W. Lee: Pressure induced optical absorption and refractive index changes of a shallow hydrogenic impurity in a quantum wire. Physica E 44, 222–228 (2011).

    Article  Google Scholar 

  13. M. El-Yadri, N. Aghoutane, E. Feddi, and F. Dujardin: Tunable excitonic transitions in strained GaAs ultra-thin quantum disk. Superlattices Microstruct. 102, 382–390 (2017).

    Article  CAS  Google Scholar 

  14. M. El Haouari, A. Talbi, E. Feddi, H. El Ghazi, A. Oukerroume, and F. Dujardin: Linear and nonlinear optical properties of a single dopant in strained AlAs/GaAs spherical core/shell quantum dots. Opt. Commun. 383, 231–237 (2017).

    Article  Google Scholar 

  15. J.-M. Wagner and F. Bechstedt: Properties of strained wurtzite GaN and AlN: Ab initio studies. Phys. Rev. B 66, 115202 (2002).

    Article  Google Scholar 

  16. C.M. Duque, A.L. Morales, M.E. Mora-Ramos, and C.A. Duque: Exciton-related optical properties in zinc-blende GaN/InGaN quantum wells under hydrostatic pressure. Phys. Status Solidi B 252, 4, 670–677 (2015).

    Article  CAS  Google Scholar 

  17. H. Eshghi: The effect of hydrostatic pressure on material parameters and electrical transport properties in bulk GaN. Phys. Lett. A 373, 1773–1776 (2009).

    Article  CAS  Google Scholar 

  18. M. Zhang and J.J. Shi: Influence of pressure on exciton states and interband optical transitions in wurtzite InGaN/GaN coupled quantum dot nanowire heterostructures with polarization and dielectric mismatch. J. Appl. Phys. 111, 113516 (2012).

    Article  Google Scholar 

  19. F.J. Culchac, N. Porras-Montenegro, and A. Latge: Hydrostatic pressure effects on electron states in GaAs–(Ga,Al)As double quantum rings. J. Appl. Phys. 105, 094324 (2009).

    Article  Google Scholar 

  20. H.M. Baghramyan, M.G. Barseghyan, A.A. Kirakosyan, R.L. Restrepo, and C.A. Duque: Linear and nonlinear optical absorption coefficients in GaAs/Ga1-xAlxAs concentric double quantum rings: effects of hydrostatic pressure and aluminum concentration. J. Lumin. 134, 594–599 (2013).

    Article  CAS  Google Scholar 

  21. M.G. Barseghyan, M.E. Mora-Ramos, and C.A. Duque: Hydrostatic pressure, impurity position and electric and magnetic field effects on the binding energy and photo-ionization cross section of a hydrogenic donor impurity in an InAs Pöschl–Teller quantum ring. Eur. Phys. J. B 84, 265 (2011).

    Article  CAS  Google Scholar 

  22. F. Dujardin, E. Feddi, E. Assaid, and A. Oukerroum: Stark shift and dissociation process of an ionized donor bound exciton in spherical quantum dots. Eur. Phys. J. B 74, 507 (2010).

    Article  CAS  Google Scholar 

  23. E. Feddi, A. Zouitine, A. Oukerroum, F. Dujardin, E. Assaid, and M. Zazoui: Size dependence of the polarizability and Haynes rule for an exciton bound to an ionized donor in a single spherical quantum dot. J. Appl. Phys. 117, 064309 (2015).

    Article  Google Scholar 

  24. J. El Khamkhami, E. Feddi, E. Assaid, F. Dujardin, B. Stébé, and J. Diouri: Low magnetic field effect on the polarisability of excitons in spherical quantum dots. Phys. Scr. 64, 504 (2001).

    Article  Google Scholar 

  25. J.V. Atanasoff: The dielectric constant of helium. Phys. Rev. 36, 1232 (1930).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. Feddi or G. Long.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghoutane, N., El-Yadri, M., Feddi, E. et al. Pressure effect on an exciton in a wurtzite AlN/GaN/AlN spherical core/shell quantum dot. MRS Communications 8, 527–532 (2018). https://doi.org/10.1557/mrc.2018.74

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.74

Navigation