Skip to main content
Log in

Low-temperature electrical conduction of plasma-treated bilayer MoS2

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

We report on the low-temperature electrical characterization of bilayer MoS2 treated with increasing dose of oxygen:argon (1:3) plasma. We characterize the effective Schottky barrier heights as a function of plasma exposure time and observe a significant barrier lowering, with no accompanying p-type conduction in the negative bias region. Furthermore, we observe a crossover in the temperature-dependent conduction regimes below 181 K due to the plasma exposure. The Efros-Shklovskii (ES) hopping regime is seen to transform upon plasma exposure to a mixed ES/thermally-activated regime at high temperatures, and to a strongly short-range Arrhenius regime at low temperatures. We attribute the observed crossovers to a critical defect density created by the surface reaction with the plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Table I

Similar content being viewed by others

References

  1. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, and M. Strano: Electronics and Optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).

    Article  CAS  Google Scholar 

  2. Z. Yu, Z.-Y. Ong, S. Li, J.-B. Xu, G. Zhang, Y.-W. Zhang, Y. Shi, and X. Wang: Analyzing the carrier mobility in transition-metal dichalcogenide MoS2 field-effect transistors. Adv. Funct. Mater. 27, 1604093 (2017).

    Article  Google Scholar 

  3. C.D. English, G. Shine, V.E. Dorgan, K.C. Saraswat, and E. Pop: Improved contacts to MoS2 transistors by ultra-high vacuum metal deposition. Nano Lett. 16, 3824–3830 (2016).

    Article  CAS  Google Scholar 

  4. S. Chuang, C. Battaglia, A. Azcatl, S. McDonnell, J.S. Kang, X. Yin, M. Tosun, R. Kapadia, H. Fang, R.M. Wallace, and A. Javey: MoS2 P-type transistors and diodes enabled by high work function MoOX contacts. Nano Lett. 14, 1337–1342 (2014).

    Article  CAS  Google Scholar 

  5. M. Chen, H. Nam, S. Wi, L. Ji, X. Ren, L. Bian, S. Lu, and X. Liang: Stable few-layer MoS2 rectifying diodes formed by plasma-assisted doping. Appl. Phys. Lett. 103, 142110 (2013).

    Article  Google Scholar 

  6. M. Chen, H. Nam, S. Wi, G. Priessnitz, I.M. Gunawan, and X. Liang: Multibit data storage states formed in plasma-treated MoS2 transistors. ACS Nano 8, 4023–4032 (2014).

    Article  CAS  Google Scholar 

  7. L. Tao, X. Duan, C. Wang, X. Duan, and S. Wang: Plasma-engineered MoS2 thin-film as an efficient electrocatalyst for hydrogen evolution reaction. Chem. Commun. 51, 7470–7473 (2015).

    Article  CAS  Google Scholar 

  8. F. Giannazzo, G. Fisichella, G. Greco, S. Di Franco, I. Deretzis, A. La Magna, C. Bongiorno, G. Nicotra, C. Spinella, M. Scopelliti, B. Pignataro, S. Agnello, and F. Roccaforte: Ambipolar MoS2 Transistors by nanoscale tailoring of schottky barrier using oxygen plasma functionalization. ACS Appl. Mater. Interfaces 9, 23164–23174 (2017).

    Article  CAS  Google Scholar 

  9. J. Jadwiszczak, C. O’Callaghan, Y. Zhou, D.S. Fox, E. Weitz, D. Keane, C.P. Cullen, I. O’Reilly, C. Downing, A. Shmeliov, P. Maguire, J.J. Gough, C. McGuinness, M.S. Ferreira, A.L. Bradley, J.J. Boland, G.S. Duesberg, V. Nicolosi, and H. Zhang: Oxide-mediated recovery of field-effect mobility in plasma-treated MoS2. Sci. Adv. 4, eaao5031 (2018).

    Article  Google Scholar 

  10. D. Jariwala, V.K. Sangwan, D.J. Late, J.E. Johns, V.P. Dravid, T.J. Marks, L.J. Lauhon, and M.C. Hersam: Band-like Transport in high mobility unencapsulated single-layer MoS2 transistors. Appl. Phys. Lett. 102, 2–6 (2013).

    Article  Google Scholar 

  11. B.W.H. Baugher, H.O.H. Churchill, Y. Yang, and P. Jarillo-Herrero: Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2. Nano Lett. 13, 4212–4216 (2013).

    Article  CAS  Google Scholar 

  12. I.M. Filanovsky and A. Allam: Mutual compensation of mobility and threshold voltage temperature effects with applications in CMOS circuits. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 48, 876–884 (2001).

    Article  Google Scholar 

  13. J.P. Shu, G.T. Wu, Y. Guo, B. Liu, X.L. Wei, and Q. Chen: The intrinsic origin of hysteresis in MoS2 field effect transistors. Nanoscale 8, 3049–3056 (2016).

    Article  CAS  Google Scholar 

  14. S.I. Khondaker and M.R. Islam: Bandgap engineering of MoS2 flakes via oxygen plasma: a layer dependent study. J. Phys. Chem. C 120, 13801–13806 (2016).

    Article  CAS  Google Scholar 

  15. N. Choudhary, M.R. Islam, N. Kang, L. Tetard, Y. Jung, and S.I. Khondaker: Two-dimensional lateral heterojunction through bandgap engineering of MoS2 via oxygen plasma. J. Phys. Condens. Matter. 28, 364002 (2016).

    Article  Google Scholar 

  16. N.-Y. Cui, N.M.D. Brown, and A. McKinley: An AFM study of the topography of natural MoS2 following treatment in an RF–oxygen plasma. Appl. Surf. Sci. 151, 17–28 (1999).

    Article  CAS  Google Scholar 

  17. M.R. Islam, N. Kang, U. Bhanu, H.P. Paudel, M. Erementchouk, L. Tetard, M.N. Leuenberger, and S.I. Khondaker: Tuning the electrical property via defect engineering of single layer MoS2 by oxygen plasma. Nanoscale 6, 10033–10039 (2014).

    Article  CAS  Google Scholar 

  18. C. Kim, I. Moon, D. Lee, M.S. Choi, F. Ahmed, S. Nam, Y. Cho, H. Shin, S. Park, and W.J. Yoo: Fermi level pinning at electrical metal contacts of monolayer molybdenum dichalcogenides. ACS Nano 11, 1588–1596 (2017).

    Article  CAS  Google Scholar 

  19. J. Wang, Q. Yao, C. Huang, X. Zou, L. Liao, S. Chen, Z. Fan, K. Zhang, W. Wu, and X. Xiao: High mobility MoS2 transistor with low schottky barrier contact by using atomic thick h-BN as a tunneling layer. Adv. Mater. 28, 8302–8308 (2016).

    Article  CAS  Google Scholar 

  20. A. Yildiz, N. Serin, T. Serin, and M. Kasap: Crossover from nearest-neighbor hopping conduction to Efros–Shklovskii variable-range hopping conduction in hydrogenated amorphous silicon films. Jpn. J. Appl. Phys. 48, 11203 (2009).

    Article  Google Scholar 

  21. N. Papadopoulos, G.A. Steele, and H.S.J. van der Zant: Efros-Shklovskii variable range hopping and nonlinear transport in 1 T/1 T’-MoS2. Phys. Rev. B 96, 235436 (2017).

    Article  Google Scholar 

  22. J.S. Kim, J. Kim, J. Zhao, S. Kim, J.H. Lee, Y. Jin, H. Choi, B.H. Moon, J.J. Bae, Y.H. Lee, and S.C. Lim: Electrical transport properties of polymorphic MoS2. ACS Nano 10, 7500–7506 (2016).

    Article  CAS  Google Scholar 

  23. H. Qiu, T. Xu, Z. Wang, W. Ren, H. Nan, Z. Ni, Q. Chen, S. Yuan, F. Miao, F. Song, G. Long, Y. Shi, L. Sun, J. Wang, and X. Wang: Hopping transport through defect-induced localized states in molybdenum disulphide. Nat. Commun. 4, 2642 (2013).

    Article  Google Scholar 

  24. M.G. Stanford, P.R. Pudasaini, E.T. Gallmeier, N. Cross, L. Liang, A. Oyedele, G. Duscher, M. Mahjouri-Samani, K. Wang, K. Xiao, D.B. Geohegan, A. Belianinov, B.G. Sumpter, and P.D. Rack: High conduction hopping behavior induced in transition metal dichalcogenides by percolating defect networks: toward atomically thin circuits. Adv. Funct. Mater. 27, 1702829 (2017).

    Article  Google Scholar 

  25. B.R. Matis, N.Y. Garces, E.R. Cleveland, B.H. Houston, and J.W. Baldwin: Electronic transport in bilayer MoS2 encapsulated in HfO2. ACS Appl. Mater. Interfaces 9, 27995–28001 (2017).

    Article  CAS  Google Scholar 

  26. A.L. Efros and B.I. Shklovskii: Coulomb gap and low temperature conductivity of disordered systems. J. Phys. C: Solid State Phys. 8, L49 (1975).

    Article  CAS  Google Scholar 

  27. B. Radisavljevic and A. Kis: Mobility engineering and a metal–insulator transition in monolayer MoS2. Nat. Mater. 12, 815–820 (2013).

    Article  CAS  Google Scholar 

  28. X. Cui, G.-H. Lee, Y.D. Kim, G. Arefe, P.Y. Huang, C.-H. Lee, D.A. Chenet, X. Zhang, L. Wang, F. Ye, F. Pizzocchero, B.S. Jessen, K. Watanabe, T. Taniguchi, D.A. Muller, T. Low, P. Kim, and J. Hone: Multi-terminal transport measurements of MoS2 using a van der waals heterostructure device platform. Nat. Nanotechnol. 10, 534–540 (2015).

    Article  CAS  Google Scholar 

  29. T.Y. Ko, A. Jeong, W. Kim, J. Lee, Y. Kim, J.E. Lee, G.H. Ryu, K. Park, D. Kim, Z. Lee, M.H. Lee, C. Lee, and S. Ryu: On-stack two-dimensional conversion of MoS2 into MoO3. 2D Mater. 4, 14003 (2016).

    Article  Google Scholar 

  30. R. Dhall, M.R. Neupane, D. Wickramaratne, M. Mecklenburg, Z. Li, C. Moore, R.K. Lake, and S. Cronin: Direct bandgap transition in many-layer MoS2 by plasma-induced layer decoupling. Adv. Mater. 27, 1573–1578 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to members of staff at the Advanced Microscopy Laboratory, CRANN, Trinity College Dublin for their continued technical support. We thank Robert O’Connell for assistance with liquid nitrogen, and Daniel S. Fox for assistance with TEM. The work at the School of Physics and the Centre for Research on Adaptive Nanostructures and Nanodevices at Trinity College Dublin is supported by Science Foundation Ireland [grant No: 11/PI/ 1105, 12/TIDA/I2433 07/SK/I1220a].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongzhou Zhang.

Supplementary material

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2018.72

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jadwiszczak, J., Zhou, Y. & Zhang, H. Low-temperature electrical conduction of plasma-treated bilayer MoS2. MRS Communications 8, 514–520 (2018). https://doi.org/10.1557/mrc.2018.72

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.72

Navigation