Skip to main content
Log in

Bismuth doping on CuGaS2 thin films: structural and optical properties

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

In this work, we present a solvothermal method to prepare bismuth (Bi)-doped CuGaS2 chalcopyrite nanocrystals ink and apply it to an all-solution-processed approach for the preparation of films with a thickness of approximately 730 nm and with enhanced optical properties and lower band gap energy than the undoped semiconductor films. The low-cost deposition method is comprised by spray deposition of the chal-cogenide nanocrystals ink onto the molybdenum substrates, producing microcrystalline films with grains larger than 400 nm originated from coalescence of Bi-doped nanocrystals. Bi-doped CuGaS2 microcrystalline films are a good candidate to be applied as an absorber layer in thin-film solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. T.M. Friedlmeier, P. Jackson, A. Bauer, D. Hariskos, O. Kiowski, R. Menner, R. Wuerz, and M. Powalla: High-efficiency Cu(ln,Ga)Se2 solar cells. Thin Solid Films 633, 13 (2016).

    Article  Google Scholar 

  2. J. Van Deelen,and C. Frijters: CIGS cells with metallized front contact: longer cells and higher efficiency. Sol. Energy 143, 93 (2017).

    Article  Google Scholar 

  3. Z. Lu, R. Jin, Y. Liu, L Guo, X. Liu, J. Liu, K. Cheng, and Z. Du: Optimization of chemical bath deposited cadmium sulfide buffer layer for high-efficient CIGS thin film solar cells. Mater. Lett. 204, 53 (2017).

    Article  CAS  Google Scholar 

  4. L. Yu, R.S. Kokenyesi, D.A. Keszler, and A. Zunger: Inverse design of high absorption thin-film photovoltaic materials. Adv. Energy Mater. 3, 43 (2013).

    Article  CAS  Google Scholar 

  5. J. Ramanujam, and U.P. Singh: Copper indium gallium selenide based solar cells - review. Energy Environ. Sci. 10, 1306 (2017).

    Article  CAS  Google Scholar 

  6. T.D. Lee, and A.U. Ebong: a review of thin film solar cell technologies and challenges. Renew. Sustain. Energy Rev. 70, 1286 (2017).

    Article  CAS  Google Scholar 

  7. M. Han, X. Zhang, Y. Zhang, and Z. Zeng: The group VA element noncompensated n-p codoping in CuGaS2 for intermediate band materials. Sol. Energy Mater. Sol. Cells 144, 664 (2016).

    Article  CAS  Google Scholar 

  8. W. Jing, Y. Wang, J. Zhu, W. Yao, and S. Song: Effects of Ti-doping on CuGaS2 thin films by co-sputtering and sulfurizing. Mater. Lett. 164, 513 (2016).

    Article  CAS  Google Scholar 

  9. N. Armaroli, and V. Balzani: Solar electricity and solar fuels: status and perspectives in the context of the energy transition. Chem. A Eur. J. 22, 32 (2015).

    Article  Google Scholar 

  10. X. Lv, S. Yang, M. Li, H. Li, J. Yi, M. Wang, G. Niu, and J. Zhong: Investigation of a novel intermediate band photovoltaic material with wide spectrum solar absorption based on Ti-substituted CuGaS2. Sol. Energy 103, 480 (2014).

    Article  CAS  Google Scholar 

  11. P. Chen, M. Qin, H. Chen, C. Yang, Y. Wang, and F. Huang: Cr incorporation in CuGaS2 chalcopyrite: a new intermediate-band photovoltaic material with wide-spectrum solar absorption. Phys. Stat. Solidi Appl. Mater. Sci. 210, 1098 (2013).

    CAS  Google Scholar 

  12. L. Xiao, J. Zhu, T. Ding, Y. Wang, Y. Fan, and Q. Bo: Synthesis and characterization of Ce-incorporated CulnS2 chalcopyrites. Mater. Lett. 159, 392 (2015).

    Article  CAS  Google Scholar 

  13. J. Koskelo, J. Hashemi, S. Huotari, and M. Hakala: First-principles analysis of the intermediate band in CuGa1_xFexS2. Phys. Rev. B 93, 165204 (2016).

    Article  Google Scholar 

  14. M.M. Han, X.L. Zhang, and Z. Zeng: Sn doping induced intermediate band in CuGaS2. RSC Adv. 6, 110511 (2016).

    Article  CAS  Google Scholar 

  15. W. Jeong, and G. Park: Structural and electrical properties of CuGaS thin films by electron beam evaporation. Sol. Energy Mater. Sol. Cells 75, 93 (2003).

    Article  CAS  Google Scholar 

  16. S.K. Kim, J.P. Park, M.K. Kim, K.M. Ok, and I.W. Shim: Preparation of CuGaS2 thin films by two-stage MOCVD method. Sol. Energy Mater. Sol. Cells 92, 1311 (2008).

    Article  CAS  Google Scholar 

  17. J.A. Hollingsworth, K.K. Banger, M.H.C. Jin, J.D. Harris, J.E. Cowen, E.W. Bohannan, J.A. Switzer, W.E. Buhro, and A.F. Hepp: Single source precursors for fabrication of I-III-VI2 thin-film solar cells via spray CVD. Thin Solid Films 431–432, 63 (2003).

    Google Scholar 

  18. S.-H. Chang, B.-C. Chiu, T.-L Gao, S.-L. Jheng, and H.-Y. Tuan: Selective synthesis of copper gallium sulfide (CuGaS2) nanostructures of different sizes, crystal phases, and morphologies. CrystEngComm 16, 3323 (2014).

    Article  CAS  Google Scholar 

  19. B. Cordero, V. Gomez, A.E. Platero-Prats, M. Reves, J. Echeverrfa, E. Cremades, F. Barragan, and S. Alvarez: Covalent radii revisited. Dalt. Trans. No. 21, 2832 (2008).

    Article  Google Scholar 

  20. N. Guijarro, M.S. Prevot, X. Yu, X.A. Jeanbourquin, P. Bornoz, W. Bouree, M. Johnson, F. Le Formal, and K. Sivula: A bottom-up approach toward all-solution-processed high-efficiency Cu(In,Ga)S2 photocathodes for solar water splitting. Adv. Energy Mater. 6, 1 (2016).

    Article  Google Scholar 

  21. Y. Zhang, Q. Ye, J. Liu, H. Chen, X. He, C. Liao, J. Han, H. Wang, J. Mei, and W. Lau: Earth-abundant and low-cost CZTS solar cell on flexible molybdenum foil. RSCAdv. 4, 23666 (2014).

    CAS  Google Scholar 

  22. R. Moreno, E.A. Ramirez, and G. Gordillo Guzman: Study of optical and structural properties of CZTS thin films grown by co-evaporation and spray pyrolysis. J. Phys. Conf. Ser 687, 012041 (2016).

    Article  Google Scholar 

  23. W.P.C. Lee, L.L. Tan, S. Sumathi, and S.P. Chai: Copper-doped flower-like molybdenum disulfide/bismuth sulfide photocatalysts for enhanced solar water splitting. Int. J. Hydrog. Energy 43, 748 (2017).

    Article  Google Scholar 

  24. M. Li, R. Zhao, Y. Su, J. Hu, Z. Yang, and Y. Zhang: Synthesis of CulnS2 nanowire arrays via solution transformation of Cu2S self-template for enhanced photoelectrochemical performance. Appl. Catal. B Environ. 203, 715 (2017).

    Article  CAS  Google Scholar 

  25. K. Subbaramaiah, and V. S. Raja: Chemical spray deposition of CuGaS2 thin films. Proc. SPIE 1523, 555 (1992).

    Article  CAS  Google Scholar 

  26. S. Ullah, H. Ullah, F. Bouhjar, M. Mollar, and B. Man: Synthesis of in-gap band CuGaS2: Cr absorbers and numerical assessment of their performance in solar cells. Sol. Energy Mater. Sol. Cells 180, 322 (2017).

    Article  Google Scholar 

  27. R. Strandberg, and I. Aguilera: Evaluation of vanadium substituted ln2S3 as a material for intermediate band solar cells. Sol. Energy Mater. Sol. Cells 98, 88 (2012).

    Article  CAS  Google Scholar 

  28. T. Ahsan, S. Kalainathan, N. Miyashita, T. Hoshii, Y. Okada, T. Ahsan, S. Kalainathan, N. Miyashita, T. Hoshii, and Y.O. Characterization: Characterization of Cr doped CuGaS2 thin films synthesized by chemical spray pyrolysis. Mech. Mater. Sci. Eng. MMSE J. Open Access 9, 380 (2017).

    Google Scholar 

  29. M. Han, X. Zhang, and Z. Zeng: The investigation of transition metal doped CuGaS2 for promising intermediate band materials. RSC Adv. 4, 62380 (2014).

    Article  CAS  Google Scholar 

  30. I. Aksenov, Y. Kudo, and K. Sato: Optical absorption spectra in CuAIS2 doped with vanadium. Jpn. J. Appl. Phys. 1359, L145 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos A. S. Andrade Jr..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrade, M.A.S., Mascara, L.H. Bismuth doping on CuGaS2 thin films: structural and optical properties. MRS Communications 8, 504–508 (2018). https://doi.org/10.1557/mrc.2018.63

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.63

Navigation