Skip to main content
Log in

One-step fabrication of binder-free three-dimensional Co3O4 electrodes by Reactive Spray Deposition Technology for application in high-performance supercapacitors

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Binder-free three-dimensional Co3O4 electrodes are fabricated by an economical and scalable one-step flame combustion method, namely Reactive Spray Deposition Technology. The electrodes are composed of porous nanostructured Co3O4 uniformly distributed throughout the conductive substrate. In the absence of any further optimization on the processing conditions, the as-synthesized electrodes demonstrate high capacitance of 567 F g−1 at 1.5 A g−1, excellent rate capability, and stable cycling performance with a capacity retention ratio of 96.7% after 1000 charge/discharge cycles from the three-electrode half-cell testing. This study presents the pathway to a significantly simplified manufacturing process of three-dimensional electrodes with the desirable porous nanostructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Q. Liao, N. Li, S. Jin, G. Yang, and C. Wang: All-solid-state symmetric supercapacitor based on Co3O4 nanoparticles on vertically aligned graphene. ACS Nano 9, 5310 (2015).

    Article  CAS  Google Scholar 

  2. B.G. Choi, M. Yang, W.H. Hong, J.W. Choi, and Y.S. Huh: 3D macroporous graphene frameworks for supercapacitors with high energy and power densities. ACS Nano 6, 4020 (2012).

    Article  CAS  Google Scholar 

  3. H. Jin, X. Wang, Z. Gu, and J. Polin: Carbon materials from high ash biochar for supercapacitor and improvement of capacitance with HNO3 surface oxidation. J. Power Sources 236, 285 (2013).

    Article  CAS  Google Scholar 

  4. D.T. Dam, X. Wang, and J.M. Lee: Graphene/NiO nanowires: controllable one-pot synthesis and enhanced pseudocapacitive behavior. ACS Appl. Mater. Interfaces 6, 8246 (2014).

    Article  CAS  Google Scholar 

  5. S.K. Meher and G.R. Rao: Ultralayered Co3O4 for high-performance supercapacitor applications. J. Phys. Chem. C 115, 15646 (2011).

    Article  CAS  Google Scholar 

  6. W.K. Chee, H.N. Lim, I. Harrison, K.F. Chong, Z. Zainal, C.H. Ng, and N.M. Huang: Performance of flexible and binderless polypyrrole/graphene oxide/zinc oxide supercapacitor electrode in a symmetrical two-electrode configuration. Electrochim. Acta 157, 88 (2015).

    Article  CAS  Google Scholar 

  7. R. Kumar, R.K. Singh, A.R. Vaz, R. Savu, and S.A. Moshkalev: Self-assembled and one-step synthesis of interconnected 3D network of Fe3O4/reduced graphene oxide nanosheets hybrid for high-performance supercapacitor electrode. ACS Appl. Mater. Interfaces 9, 8880 (2017).

    Article  CAS  Google Scholar 

  8. L. Wang, L. Chen, B. Yan, C. Wang, F. Zhu, X. Jiang, Y. Chao, and G. Yang: In situ preparation of SnO2 @ polyaniline nanocomposites and their synergetic structure for high-performance supercapacitors. J. Mater. Chem. A 2, 8334 (2014).

    Article  CAS  Google Scholar 

  9. S.E. Moosavifard, M.F. El-Kady, M.S. Rahmanifar, R.B. Kaner, and M.F. Mousavi: Designing 3D highly ordered nanoporous CuO electrodes for high-performance asymmetric supercapacitors. ACS Appl. Mater. Interfaces 7, 4851 (2015).

    Article  CAS  Google Scholar 

  10. S. Maiti, A. Pramanik, and S. Mahanty: Interconnected network of MnO2 nanowires with a “cocoonlike” morphology: redox couple-mediated performance enhancement in symmetric aqueous supercapacitor. ACS Appl. Mater. Interfaces 6, 10754 (2014).

    Article  CAS  Google Scholar 

  11. Q. Hao, X. Xia, W. Lei, W. Wang, and J. Qiu: Facile synthesis of sandwich-like polyaniline/boron-doped graphene nano hybrid for supercapacitors. Carbon N. Y. 81, 552–563 (2015).

    Article  CAS  Google Scholar 

  12. Y. Huang, H. Li, Z. Wang, M. Zhu, Z. Pei, Q. Xue, Y. Huang, and C. Zhi: Nanostructured polypyrrole as a flexible electrode material of supercapacitor. Nano Energy 22, 422–438 (2016).

    Article  CAS  Google Scholar 

  13. J.M. D’Arcy, M.F. El-Kady, P.P. Khine, L. Zhang, S.H. Lee, N.R. Davis, D.S. Liu, M.T. Yeung, S.Y. Kim, C.L. Turner, and A.T. Lech: Vapor-phase polymerization of nanofibrillar poly (3, 4-ethylenedioxythiophene) for supercapacitors. ACS Nano 8, 1500–1510 (2014).

    Article  Google Scholar 

  14. G.S. Jang, S. Ameen, M.S. Akhtar, and H.S. Shin: Cobalt oxide nanocubes as electrode material for the performance evaluation of electrochemical supercapacitor. Ceram. Int. 44, 588 (2018).

    Article  CAS  Google Scholar 

  15. F. Du, X.Q. Zuo, Q. Yang, G. Li, Z.L. Ding, M.Z. Wu, Y.Q. Ma, S.W. Jin, and K.R. Zhu: Facile hydrothermal reduction synthesis of porous Co3O4 nanosheets @ RGO nanocomposite and applied as a supercapacitor electrode with enhanced specific capacitance and excellent cycle stability. Electrochim. Acta 222, 976 (2016).

    Article  CAS  Google Scholar 

  16. K. Ding, X. Zhang, P. Yang, and X. Cheng: A precursor-derived morphology-controlled synthesis method for mesoporous Co3O4 nanostructures towards supercapacitor application. CrystEngComm 18, 8253 (2016).

    Article  CAS  Google Scholar 

  17. S. Deng, X. Xiao, G. Chen, L. Wang, and Y. Wang: Cd doped porous Co3O4 nanosheets as electrode material for high performance supercapacitor application. Electrochim. Acta 196, 316 (2016).

    Article  CAS  Google Scholar 

  18. D. Yan, H. Zhang, L. Chen, G. Zhu, S. Li, H. Xu, and A. Yu: Biomorphic synthesis of mesoporous Co3O4 microtubules and their pseudocapacitive performance. ACS Appl. Mater. Interfaces 6, 15632 (2014).

    Article  CAS  Google Scholar 

  19. R.B. Rakhi, W. Chen, M.N. Hedhili, D. Cha, and H.N. Alshareef: Enhanced rate performance of mesoporous Co3O4 nanosheet supercapacitor electrodes by hydrous RuO2 nanoparticle decoration. ACS Appl. Mater. Interfaces 6, 4196 (2014).

    Article  CAS  Google Scholar 

  20. L. Qu, Y. Zhao, A.M. Khan, C. Han, K.M. Hercule, M. Yan, X. Liu, W. Chen, D. Wang, Z. Cai, and W. Xu: Interwoven three-dimensional architecture of cobalt oxide nanobrush-graphene@ NixCo2x(OH)6x for high-performance supercapacitors. Nano Lett. 15, 2037–2044 (2015).

    Article  CAS  Google Scholar 

  21. W. Hong, J. Wang, Z. Li, and S. Yang: Fabrication of Co3O4@ Co-Ni sulfides core/shell nanowire arrays as binder-free electrode for electrochemical energy storage. Energy 93, 435–441 (2015).

    Article  CAS  Google Scholar 

  22. X.C. Dong, H. Xu, X.W. Wang, Y.X. Huang, M.B. Chan-Park, H. Zhang, L.H. Wang, W. Huang, and P. Chen: 3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 6, 3206–3213 (2012).

    Article  CAS  Google Scholar 

  23. W. Hong, J. Wang, P. Gong, J. Sun, L. Niu, Z. Yang, Z. Wang, and S. Yang: Rational construction of three dimensional hybrid Co3O4@ NiMoO4 nanosheets array for energy storage application. J. Power Sources 270, 516–525 (2014).

    Article  CAS  Google Scholar 

  24. P. Roth: Particle synthesis in flames. Proc. Combust. Inst. 31, 1773 (2007).

    Article  Google Scholar 

  25. R. Strobel and S.E. Pratsinis: Flame aerosol synthesis of smart nanostructured materials. J. Mater. Chem. 17, 4743 (2007).

    Article  CAS  Google Scholar 

  26. F. Švegl, B. Orel, M.G. Hutchins, and K. Kalcher: Structural and spectroelectrochemical investigations of sol-gel derived electrochromic spinel Co3O4 films. J. Electrochem. Soc. 143, 1532 (1996).

    Article  Google Scholar 

  27. Y. Wang, Y. Lei, J. Li, L. Gu, H. Yuan, and D. Xiao: Synthesis of 3D-nanonet hollow structured Co3O4 for high capacity supercapacitor. ACS Appl. Mater. Interfaces 6, 6739 (2014).

    Article  CAS  Google Scholar 

  28. H. Du, L. Jiao, Q. Wang, J. Yang, L. Guo, Y. Si, Y. Wang, and H. Yuan: Facile carbonaceous microsphere templated synthesis of Co3O4 hollow spheres and their electrochemical performance in supercapacitors. Nano Res. 6, 87 (2013).

    Article  CAS  Google Scholar 

  29. Q.Q. Ke, C.H. Tang, Z.C. Yang, M.R. Zheng, L. Mao, H.J. Liu, and J. Wang: 3D nanostructure of carbon nanotubes decorated Co3O4 nanowire arrays for high performance supercapacitor electrode. Electrochim. Acta 163, 9 (2015).

    Article  CAS  Google Scholar 

  30. M. Qorbani, T. Chou, Y. Lee, S. Samireddi, N. Naseri, A. Ganguly, A. Esfandiar, C. Wang, L. Chen, K. Chen, and A.Z. Moshfegh: Multi-porous Co3O4 nanoflakes @ sponge-like few-layer partially reduced graphene oxide hybrids: towards highly stable asymmetric supercapacitors. J. Mater. Chem. 5, 12569 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the School of Engineering and Center for Clean Energy Engineering at the University of Connecticut for the financial support and facility use.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Wang.

Conflicts of interest

Conflicts of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., He, J., Roller, J. et al. One-step fabrication of binder-free three-dimensional Co3O4 electrodes by Reactive Spray Deposition Technology for application in high-performance supercapacitors. MRS Communications 8, 597–603 (2018). https://doi.org/10.1557/mrc.2018.57

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.57

Navigation