Improvement of color retention properties of Ag deposition-based electrochromic device by introducing anion exchange membrane


Ag deposition-based multicolor electrochromic (EC) device we reported can switch various optical states among transparent, black, silver, cyan, magenta, and yellow by only using electrochemical deposition of Ag. However, the EC device had poor color retention property under open-circuit state because of dissolution of deposited Ag metal by Cu2+ ions, which is essential because it acts as redox material at counter electrode. Here, we introduced an anion exchange membrane to separate Cu2+ from the Ag deposit. The improved device achieved longer retention time of colored state. It is effective to maintain the coloring state without electric power for practical application.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3


  1. 1.

    P.M.S. Monk, R.J. Mortimer, and D.R. Rosseinsky: Electrochromism and Electrochromic Devices (Cambridge University Press, Cambridge, England, 2007).

    Google Scholar 

  2. 2.

    R.J. Mortimer: Organic electrochromic materials. Electrochim. Acta 44, 2971–2981 (1999).

    CAS  Article  Google Scholar 

  3. 3.

    N. Kobayashi, S. Miura, M. Nishimura, and H. Urano: Organic electrochromism for a new color electronic paper. Sol. Energy Mater. Sol. Cells 92, 36–139 (2008).

    Article  Google Scholar 

  4. 4.

    D.R. Rosseinsky and R.J. Mortimer: Electrochromic systems and the prospects for devices. Adv. Mater. 13, 783–793 (2001).

    CAS  Article  Google Scholar 

  5. 5.

    H. Urano, S. Sunohara, H. Ohtomo, and N. Kobayashi: Electrochemical and spectroscopic characteristics of dimethyl terephthalate. J. Mater. Chem. 14, 2366–2368 (2004).

    CAS  Article  Google Scholar 

  6. 6.

    A.A. Argun, P.H. Aubert, B.C. Thompson, I. Schwendeman, C.L. Gaupp, J. Hwang, N.J. Pinto, D.B. Tanner, A.G. MacDiarmid, and J. R. Reynolds: Multicolored electrochromism in polymers: structures and devices. Chem. Mater. 16, 4401–4412 (2004).

    CAS  Article  Google Scholar 

  7. 7.

    K. Imaizumi, Y. Watanabe, K. Nakamura, T. Omatsu, and N. Kobayashi: Multicolored electrochromism in 4,40-biphenyl dicarboxylic acid diethyl ester. Phys. Chem. Chem. Phys. 13, 11838–11840 (2011).

    CAS  Article  Google Scholar 

  8. 8.

    E. Unur, J.-H. Jung, R.J. and J.R. Reynolds: Dual-polymer electrochromic film characterization using bi potentiostatic control. Chem. Mater. 20, 2328–2334 (2008).

    CAS  Article  Google Scholar 

  9. 9.

    Y. Naijoh, T. Yashiro, S. Hirano, Y. Okada, S. Kim, K. Tsuji, H. Takahashi, K. Fujimura, and H. Kondoh: Multi-layered electrochromic display. IDW 11, 375–378 (2011).

    Google Scholar 

  10. 10.

    S. Yokogawa, S.P. Burgos, and H.A. Atwater: Plasmonic color filters for CMOS image sensor applications. Nano Lett. 12, 4349–4354 (2012).

    CAS  Article  Google Scholar 

  11. 11.

    S.J. Tan, L. Zhang, D. Zhu, X.M. Goh, Y.M. Wang, K. Kumar, C-W. Qiu, and J.K. Yang: Plasmonic color palettes for photorealistic printing with aluminum nanostructures. Nano Lett. 14, 4023–4029 (2014).

    CAS  Article  Google Scholar 

  12. 12.

    K. Kumar, H. Duan, R.S. Hegde, S.C.W. Koh, J.N. Wei, and J.K.W. Yang: Printing colour at the optical diffraction limit. Nat Nanotechnol. 7, 557–561 (2012).

    CAS  Article  Google Scholar 

  13. 13.

    S. Araki, K. Nakamura, K. Kobayashi, A. Tsuboi, and N. Kobayashi: Electrochemical optical-modulation device with reversible transformation between transparent, mirror, and black. Adv. Mater. 14, 122–126 (2012).

    Google Scholar 

  14. 14.

    A. Tsuboi, K. Nakamura, and N. Kobayashi: A localized surface plasmon resonance-based multicolor electrochromic device with electrochemically size-controlled silver nanoparticles. Adv. Mater. 25, 3197–3201 (2013).

    CAS  Article  Google Scholar 

  15. 15.

    A. Tsuboi, K. Nakamura, and N. Kobayashi: Multicolor electrochromism showing three primary color states (cyan-magenta-yellow) based on size- and shape-controlled silver nanoparticles. Chem. Mater. 26, 6477–6485 (2014).

    CAS  Article  Google Scholar 

  16. 16.

    R. Onodera, A. Tsuboi, K. Nakamura, and N. Kobayashi: Coloration mechanisms of Ag deposition-based multicolor electrochromic device investigated by morphology of Ag deposit and its optical properties. J. SID 24, 424–432 (2016).

    CAS  Google Scholar 

  17. 17.

    G. Sandmann, H. Dietz, and W. Plieth: Preparation of silver nanoparticles on ITO surfaces by a double-pulse method. J. Electroanal. Chem. 491, 78–86 (2000).

    CAS  Article  Google Scholar 

  18. 18.

    M. Ueda, H. Dietz, A. Anders, H. Kneppe, A. Meixner, and W. Plieth: Double-pulse technique as an electrochemical tool for controlling the preparation of metallic nanoparticles. J. Electrochim. Acta 48, 377–386 (2002).

    CAS  Article  Google Scholar 

  19. 19.

    A. Safavi, N. Maleki, and E. Farjami: Electrodeposited silver nanoparticles on carbon ionic liquid electrode for electrocatalytic sensing of hydrogen peroxide. Electroanalysis 21, 1533–1538 (2009).

    CAS  Article  Google Scholar 

  20. 20.

    K. Wang, H. Wu, Y. Meng, Y. Zhang, and Z. Wei: Integrated energy storage and electrochromic function in one flexible device: an energy storage smart window. Energy Environ. Sci. 5, 8384–8389 (2012).

    CAS  Article  Google Scholar 

  21. 21.

    Y-Y. Song, Z-D. Gao, J-H. Wang, X-H. Xia, and R. Lynch: Multistage coloring electrochromic device based on TIO2 nanotube arrays modified with WO3 nanoparticles. Adv. Fund. Mater. 21, 1941–1946 (2011).

    CAS  Article  Google Scholar 

  22. 22.

    Y. Tian, W. Zhang, S. Cong, Y. Zheng, F. Geng, and Z. Zhao: Unconventional aluminum ion intercalation/deintercalation for fast switching and highly stable electrochromism. Adv. Fund. Mater. 25, 5833–5839 (2015).

    CAS  Article  Google Scholar 

  23. 23.

    C-P. Li, C. Engtrakul, R.C. Tenent, and C.A. Wolden: Scalable synthesis of improved nanocrystalline, mesoporous tungsten oxide films with exceptional electrochromic performance. Sol. Energy Mater. Sol. Cells 132, 6–14 (2015).

    CAS  Article  Google Scholar 

  24. 24.

    G.A. Niklasson, and C.G. Granqvist: Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these. J. Mater. Chem. 17, 127–156 (2007).

    CAS  Article  Google Scholar 

  25. 25.

    C.G. Granqvist: Electrochromics for smart windows: oxide-based thin films and devices. Thin Solid Films 564, 1–38 (2014).

    CAS  Article  Google Scholar 

  26. 26.

    C.M. Lampert: Chromogenic smart materials. Mater. Today 7, 28–35 (2004).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Norihisa Kobayashi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kimura, S., Onodera, R., Nakamura, K. et al. Improvement of color retention properties of Ag deposition-based electrochromic device by introducing anion exchange membrane. MRS Communications 8, 498–503 (2018).

Download citation