Skip to main content
Log in

Perfluorocarbon-based nanomedicine: emerging strategy for diagnosis and treatment of diseases

  • Prospective Article
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Nanotechnology has been considered as a promising strategy for diagnosis and treatment of various diseases. However, the stability and circulation times of the conventional nano-carriers, such as liposomes and micelles, are still unsatisfied. Perfluorocarbons (PFCs) are biologic inert synthetic materials, which are highly hydrophobic and have a tendency to self-aggregation. Additionally, PFCs themselves can act as 19F magnetic resonance imaging agents and oxygen carriers. Thus, the construction of the fluorinated carriers will not only improve the stability of the carriers, but also endow them with additional functions. Here we review the recent advances of PFC-based nanosystems for diagnosis and treatment of diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. J. Shi, P.W. Kantoff, R. Wooster, and O.C. Farokhzad: Cancer nanomedi-cine: progress, challenges and opportunities. Nat. Rev. Cancer 17, 20 (2017).

    Article  CAS  Google Scholar 

  2. P.P. Adiseshaiah, R.M. Crist, S.S. Hook, and S.E. McNeil: Nanomedicine strategies to overcome the pathophysiological barriers of pancreatic cancer. Nat. Rev. Clin. Oncol. 13, 750 (2016).

    Article  CAS  Google Scholar 

  3. V.P. Torchilin: Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat. Rev. Drug Discov. 13, 813 (2014).

    Article  CAS  Google Scholar 

  4. V.P. Chauhan and R.K. Jain: Strategies for advancing cancer nanomedicine. Nat Mater. 12, 958 (2013).

    Article  CAS  Google Scholar 

  5. H. Chen, W. Zhang, G. Zhu, J. Xie, and X. Chen: Rethinking cancer nano-theranostics. Nat Rev. Mater. 2, 17024 (2017).

    Article  CAS  Google Scholar 

  6. M.P. Krafft and J.G. Riess: Chemistry, physical chemistry, and uses of molecular fluorocarbon-hydrocarbon diblocks, triblocks, and related compounds—unique “apolar” components for self-assembled colloid and interface engineering. Chem. Rev. 109, 1714 (2009).

    Article  CAS  Google Scholar 

  7. J.M. Janjic and E.T. Ahrens: Fluorine-containing nanoemulsions for MRI cell tracking. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1, 492 (2009).

    Article  CAS  Google Scholar 

  8. J.G. Riess: Highly fluorinated amphiphilic molecules and self-assemblies with biomedical potential. Curr. Opin. Colloid Interface Sci. 14, 294 (2009).

    Article  CAS  Google Scholar 

  9. J.G. Riess and M.P. Krafft: Fluorinated materials for in vivo oxygen transport (blood substitutes), diagnosis and drug delivery. Biomaterials 19, 1529 (1998).

    Article  CAS  Google Scholar 

  10. J.G. Riess: Oxygen carriers (‘blood substitutes”) Raison d’Etre, chemistry, and some physiology Blut ist ein ganz besondrer Saft. Chem. Rev. 101, 2797 (2001).

    Article  CAS  Google Scholar 

  11. C.I. Castro and J.C. Briceno: Perfluorocarbon-based oxygen carriers: review of products and trials. Artif. Organs 34, 622 (2010).

    Google Scholar 

  12. I. Tirotta, V. Dichiarante, C. Pigliacelli, G. Cavallo, G. Terraneo, F. B. Bombelli, P. Metrangolo, and G. Resnati: 19F magnetic resonance imaging (MRI): from design of materials to clinical applications. Chem. Rev. 115, 1106 (2014).

    Article  CAS  Google Scholar 

  13. L-H. Wang, D.-C. Wu, H.-X. Xu, and Y.-Z. You: High DNA-binding affinity and gene-transfection efficacy of bioreducible cationic nanomicelles with a fluorinated core. Angew. Chem. Int. Ed. 128, 765 (2016).

    Article  Google Scholar 

  14. M. Wang, H. Liu, L. Li, and Y. Cheng: A fluorinated dendrimer achieves excellent gene transfection efficacy at extremely low nitrogen to phosphorus ratios. Nat Commun. 5, 3053 (2014).

    Article  CAS  Google Scholar 

  15. R.A. Petros and J.M. DeSimone: Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 9, 615 (2010).

    Article  CAS  Google Scholar 

  16. T.L. Doane and C. Burda: The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chem. Soc. Rev. 41, 2885 (2012).

    Article  CAS  Google Scholar 

  17. T. Zhang, C. Zhang, J. Xing, J. Xu, C. Li, P.C. Wang, and X.-J. Liang: Multifunctional dendrimers for drug nanocarriers, In, edited by R. K. Keservani, A. K. Sharma and R. K. Kesharwani, Novel Approaches for Drug Delivery (Medical Information Science Reference 701, Hershey, PA, 2017) p. 245.

    Chapter  Google Scholar 

  18. S. Mitragotri, P.A. Burke, and R. Langer: Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat. Rev. Drug Discov. 13, 655 (2014).

    Article  CAS  Google Scholar 

  19. B. Ozpolat, A.K. Sood, and G. Lopez-Berestein: Liposomal siRNA nanocarriers for cancer therapy. Adv. Drug Deliv. Rev. 66, 110 (2014).

    Article  CAS  Google Scholar 

  20. S.R. D’Mello, C.N. Cruz, M.-L. Chen, M. Kapoor, S.L. Lee, and K.M. Tyner: The evolving landscape of drug products containing nanomaterials in the United States. Nat Nanotechnol. 12, 523 (2017).

    Article  CAS  Google Scholar 

  21. B.S. Pattni, V.V. Chupin, and V.P. Torchilin: New developments in liposomal drug delivery. Chem. Rev. 115, 10938 (2015).

    Article  CAS  Google Scholar 

  22. Y. Barenholz: Doxil®-the first FDA-approved nano-drug: lessons learned. J. Control. Release 160, 117 (2012).

    Article  CAS  Google Scholar 

  23. S. Wilhelm, A.J. Tavares, Q. Dai, S. Ohta, J. Audet, H.F. Dvorak, and W.C. W. Chan: Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1, 16014 (2016).

    Article  CAS  Google Scholar 

  24. T.M. Allen and P.R. Cullis: Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev. 65, 36 (2013).

    Article  CAS  Google Scholar 

  25. F. Caponigro, P. Cornelia, A. Budillon, J. Bryce, A. Avallone, V. De Rosa, F. lonna, and G. Cornelia: Phase I study of Caelyx (doxorubicin HCL, pegylated liposomal) in recurrent or metastatic head and neck cancer. Ann. Oncol. 11, 339 (2000).

    Article  CAS  Google Scholar 

  26. T. Yang, F.-D. Cui, M.-K. Choi, J.-W. Cho, S.-J. Chung, C.-K. Shim, and D.-D. Kim: Enhanced solubility and stability of PEGylated liposomal pac-litaxel: in vitro and in vivo evaluation. Int. J. Pharm. 338, 317 (2007).

    Article  CAS  Google Scholar 

  27. A.L. Klibanov, K. Maruyama, V.P. Torchilin, and L. Huang: Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett. 268, 235 (1990).

    Article  CAS  Google Scholar 

  28. P. Vierling, C. Santaella, and J. Greiner: Highly fluorinated amphiphiles as drug and gene carrier and delivery systems. J. Fluor. Chem. 107, 337 (2001).

    Article  CAS  Google Scholar 

  29. C. Santaella, F. Frezard, P. Vierling, and J.G. Riess: Extended in vivo blood circulation time of fluorinated liposomes. FEBS Lett. 336, 481 (1993).

    Article  CAS  Google Scholar 

  30. E. Klein, M. Ciobanu, J.r.m. Klein, V.r. Machi, C. Leborgne, T. Vandamme, B.t. Frisch, F.o. Pons, A. Kichler, G. Zuber, and L. Lebeau: “HFP” fluorinated cationic lipids for enhanced lipoplex stability and gene delivery. Bioconjug. Chem. 21, 360 (2010).

    Article  CAS  Google Scholar 

  31. Q. Xiao, J.D. Rubien, Z. Wang, E.H. Reed, D.A. Hammer, D. Sahoo, P. A. Heiney, S.S. Yadavalli, M. Goulian, S.E. Wilner, T. Baumgart, S. A. Vinogradov, M.L. Klein, and V. Percec: Self-sorting and coassembly of fluorinated, hydrogenated, and hybrid Janus dendrimers into dendri-mersomes. J. Am. Chem. Soc. 138, 12655 (2016).

    Article  CAS  Google Scholar 

  32. H. Wang, J. Hu, X. Cai, J. Xiao, and Y. Cheng: Self-assembled fluoroden-drimers in the co-delivery of fluorinated drugs and therapeutic genes. Polym. Chem. 7, 2319 (2016).

    Article  CAS  Google Scholar 

  33. H. Wang, Y. Wang, Y. Wang, J. Hu, T. Li, H. Liu, Q. Zhang, and Y. Cheng: Self-assembled fluorodendrimers combine the features of lipid and polymeric vectors in gene delivery. Angew. Chem. Int. Ed. 54, 11647 (2015).

    Article  CAS  Google Scholar 

  34. K.R. Rosholm, A. Arouri, P.L. Hansen, A. Gonzalez-Perez, and O. G. Mouritsen: Characterization of fluorinated catansomes: a promising vector in drug-delivery. Langmuir 28, 2773 (2012).

    Article  CAS  Google Scholar 

  35. K. Kataoka, A. Harada, and Y. Nagasaki: Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv. Drug Deliv. Rev. 64, 37 (2012).

    Article  Google Scholar 

  36. Y. Kakizawa and K. Kataoka: Block copolymer micelles for delivery of gene and related compounds. Adv. Drug Deliv. Rev. 54, 203 (2002).

    Article  CAS  Google Scholar 

  37. T. Wei, J. Liu, H. Ma, Q. Cheng, Y. Huang, J. Zhao, S. Huo, X. Xue, Z. Liang, and X.-J. Liang: Functionalized nanoscale micelles improve drug delivery for cancer therapy in vitro and in vivo. Nano Lett. 13, 2528 (2013).

    Article  CAS  Google Scholar 

  38. G. Gaucher, M.-H. Dufresne, V.P. Sant, N. Kang, D. Maysinger, and J.-C. Leroux: Block copolymer micelles: preparation, characterization and application in drug delivery. J. Control. Release 109, 169 (2005).

    Article  CAS  Google Scholar 

  39. U. Kedar, P. Phutane, S. Shidhaye, and V. Kadam: Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine 6, 714 (2010).

    Article  CAS  Google Scholar 

  40. J. Gong, M. Chen, Y. Zheng, S. Wang, and Y. Wang: Polymeric micelles drug delivery system in oncology. J. Control. Relea 159, 312 (2012).

    Article  CAS  Google Scholar 

  41. N. Feiner-Gracia, M. Buzhor, E. Fuentes, S. Pujals, R.J. Amir, and L. Albertazzi: Micellar stability in biological media dictates internalization in living cells. J. Am. Chem. Soc. 139, 16677 (2017).

    Article  CAS  Google Scholar 

  42. S.C. Owen, D.P. Chan, and M.S. Shoichet: Polymeric micelle stability. Nano Today!, 53 (2012).

    Google Scholar 

  43. M.P. Krafft: Fluorocarbons and fluorinated amphiphiles in drug delivery and biomedical research. Adv. Drug Deliv. Rev. 47, 209 (2001).

    Article  CAS  Google Scholar 

  44. K. Matsuoka and Y. Moroi: Micellization of fluorinated amphiphiles. Curr. Opin. Colloid Interface Sci. 8, 227 (2003).

    Article  CAS  Google Scholar 

  45. J.E. Zuckerman and M.E. Davis: Clinical experiences with systemically administered siRNA-based therapeutics in cancer. Nat. Rev. Drug Discov. 14, 843 (2015).

    Article  CAS  Google Scholar 

  46. M.P. Stewart, A. Sharei, X. Ding, G. Sahay, R. Langer, and K.F. Jensen: In vitro and ex vivo strategies for intracellular delivery. Nature 538, 183 (2016).

    Article  CAS  Google Scholar 

  47. C. Zhang, T. Zhang, S. Jin, X. Xue, X. Yang, N. Gong, J. Zhang, P. C. Wang, J.-H. Tian, J. Xing, and X.-J. Liang: Virus-inspired self-assembled nanofibers with aggregation-induced emission for highly efficient and visible gene delivery. ACS Appl. Mater. Interfaces 9, 4425 (2017).

    Article  CAS  Google Scholar 

  48. H. Yin, R.L. Kanasty, A.A. Eltoukhy, A.J. Vegas, J.R. Dorkin, and D. G. Anderson: Non-viral vectors for gene-based therapy. Nat. Rev. Genet, ft, 541 (2014).

  49. W. Xue, S. Chen, H. Yin, T. Tammela, T. Papagiannakopoulos, N.S. Joshi, W. Cai, G. Yang, R. Branson, D.G. Crowley, F. Zhang, D.G. Anderson, P. A. Sharp, and T. Jacks: CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 514, 380 (2014).

    Article  CAS  Google Scholar 

  50. R. Kanasty, J.R. Dorkin, A. Vegas, and D. Anderson: Delivery materials for siRNA therapeutics. Nat. Mater. 12, 967 (2013).

    Article  CAS  Google Scholar 

  51. L.L. Wang, Y. Liu, J.J. Chung, T. Wang, A.C. Gaffey, M. Lu, C. A. Cavanaugh, S. Zhou, R. Kanade, P. Atluri, E.E. Morrisey, and J. A. Burdick: Sustained miRNA delivery from an injectable hydrogel promotes cardiomyocyte proliferation and functional regeneration after ischaemic injury. Nat. Biomed. Eng. 1, 983 (2017).

    Article  CAS  Google Scholar 

  52. N.P. Truong, W. Gu, I. Prasadam, Z. Jia, R. Crawford, Y. Xiao, and M. J. Monteiro: An influenza virus-inspired polymer system for the timed release of siRNA. Nat. Commun. 4, 1902 (2013).

    Article  CAS  Google Scholar 

  53. A. Hernandez-Garcia, D.J. Kraft, A.F. Janssen, P.H. Bomans, N. A. Sommerdijk, D.M. Thies-Weesie, M.E. Favretto, R. Brock, F.A. de Wolf, and M.W. Werten: Design and self-assembly of simple coat proteins for artificial viruses. Nat. Nanotechnol. 9, 698 (2014).

    Article  CAS  Google Scholar 

  54. F. Mingozzi, and K.A. High: Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nat. Rev. Genet. 12, 341 (2011).

    Article  CAS  Google Scholar 

  55. L. Naldini: Gene therapy returns to centre stage. Naute 526, 351 (2015).

    Article  CAS  Google Scholar 

  56. S.K. Samal, M. Dash, S. Van Vlierberghe, D.L. Kaplan, E. Chiellini, C. Van Blitterswijk, L. Moroni, and P. Dubruel: Cationic polymers and their therapeutic potential. Chem. Soc. Rev. 41, 7147 (2012).

    Article  CAS  Google Scholar 

  57. M. Oishi, Y. Nagasaki, K. Itaka, N. Nishiyama, and K. Kataoka: Lactosylated polyethylene glycol)-siRNA conjugate through acid-labile p-thiopropionate linkage to construct pH-sensitive polyion complex micelles achieving enhanced gene silencing in hepatoma cells. J. Am. Chem. Soc. 127, 1624 (2005).

    Article  CAS  Google Scholar 

  58. D.J. Gary, N. Puri, and Y.-Y. Won: Polymer-based siRNA delivery: perspectives on the fundamental and phenomenological distinctions from polymer-based DNA delivery. J. Control. Release 121, 64 (2007).

    Article  CAS  Google Scholar 

  59. Y. He, Y. Nie, G. Cheng, L. Xie. Y. Shen, and Z. Gu: Viral mimicking ternary polyplexes: a reduction-controlled hierarchical unpacking vector for gene delivery. Adv. Mater. 26, 1534 (2014).

    Article  CAS  Google Scholar 

  60. R. Ni and Y. Chau: Structural mimics of viruses through peptide/DNA co-assembly. J. Am. Chem. Soc. 136, 17902 (2014).

    Article  CAS  Google Scholar 

  61. T. Zhang, X. Song, D. Kang, L. Zhang, C. Zhang, S. Jin, C. Wang, J. Tian, J. Xing, and X.-J. Liang: Modified bovine serum albumin as an effective charge-reversal platform for simultaneously improving the transfection efficiency and biocompatibility of polyplexes. J. Mater. Chem. B 3, 4698 (2015).

    Article  CAS  Google Scholar 

  62. T. Zhang, W. Guo, C. Zhang, J. Yu, J. Xu, S. Li, J.-H. Tian, P.C. Wang, J.-F. Xing, and X.-J. Liang: Transferrin-dressed virus-like ternary nano-particles with aggregation-induced emission for targeted delivery and rapid cytosolic release of siRNA. ACS Appl. Mater. Interfaces 9, 16006 (2017).

    Article  CAS  Google Scholar 

  63. S. Guo, Y. Huang, Q. Jiang, Y. Sun, L. Deng, Z. Liang, Q. Du, J. Xing, Y. Zhao, P.C. Wang, A. Dong, and X.-J. Liang: Enhanced gene delivery and siRNA silencing by gold nanoparticles coated with charge-reversal polyelectrolyte. ACS Nano 4, 5505 (2010).

    Article  CAS  Google Scholar 

  64. Y. Cheng, R.C. Yumul, and S.H. Pun: Virus-inspired polymer for efficient in vitro and in vivo gene delivery. Angew. Chem. Int. Ed. 128, 12192 (2016).

    Article  Google Scholar 

  65. J.E. Noble, E. De Santis, J. Ravi, B. Lamarre, V. Castelletto, J. Mantell, S. Ray, and M.G. Ryadnov: A de novo virus-like topology for synthetic virions. J. Am. Chem. Soc. 138, 12202 (2016).

    Article  CAS  Google Scholar 

  66. J. Yang, Q. Zhang, H. Chang, and Y. Cheng: Surface-engineered den-drimers in gene delivery. Chem. Rev. 115, 5274 (2015).

    Article  CAS  Google Scholar 

  67. H. Liu, Y. Wang, M. Wang, J. Xiao, and Y. Cheng: Fluorinated poly (propylenimine) dendrimers as gene vectors. Biomaterials 35, 5407 (2014).

    Article  CAS  Google Scholar 

  68. J. Lv, H. Chang, Y. Wang, M. Wang, J. Xiao, Q. Zhang, and Y. Cheng: Fluorination on polyethylenimine allows efficient 2D and 3D cell culture gene delivery. J. Mater. Chem. S 3, 642 (2015).

    Article  CAS  Google Scholar 

  69. X. Cai, R. Jin, J. Wang, D. Yue, Q. Jiang, Y. Wu, and Z. Gu: Bioreducible fluorinated peptide dendrimers capable of circumventing various physiological barriers for highly efficient and safe gene delivery. ACS Appl. Mater. Interfaces 8, 5821 (2016).

    Article  CAS  Google Scholar 

  70. X. Cai, H. Zhu, Y. Zhang, and Z. Gu: Highly efficient and safe delivery of VEGF siRNA by bioreducible fluorinated peptide dendrimers for cancer therapy. ACS Appl. Mater. Interfaces 9, 9402 (2017).

    Article  CAS  Google Scholar 

  71. G. Chen, K. Wang, Q. Hu, L. Ding, F. Yu, Z. Zhou, Y. Zhou, J. Li, M. Sun, and D. Oupicky: Combining fluorination and bioreducibility for improved siRNA polyplex delivery. ACS Appl. Mater. Interfaces 9, 4457 (2017).

    Article  CAS  Google Scholar 

  72. E.P. Wesseler, R. litis, and L.C. Clark: The solubility of oxygen in highly fluorinated liquids. J. Fluor. Chem. 9, 137 (1977).

    Article  CAS  Google Scholar 

  73. L.C. Clark and F. Gollan: Survival of mammals breathing organic liquids equilibrated with oxygen at atmospheric pressure. Science 152, 1755 (1966).

    Article  CAS  Google Scholar 

  74. D. Maluf, V. Mas, K. Yanek, J. Stone, R. Weis, D. Massey, B. Spiess, M. Posner, and R. Fisher: Molecular markers in stored kidneys using perfluorocarbon-based preservation solution: preliminary results. Transplant. Proc. 38, 1243 (2006).

    Article  CAS  Google Scholar 

  75. Y. Cheng, H. Cheng, C. Jiang, X. Qiu, K. Wang, W. Huan, A. Yuan, J. Wu, and Y. Hu: Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy. Nat. Commun. 6, 8785 (2014).

    Article  CAS  Google Scholar 

  76. J.G. Riess: Highly fluorinated systems for oxygen transport, diagnosis and drug delivery. Colloids Surf. A Physicochem. Eng. Asp. 84, 33 (1994).

    Article  CAS  Google Scholar 

  77. K. Lowe: Perfluorinated blood substitutes and artificial oxygen carriers. Blood Rev. 13, 171 (1999).

    Article  CAS  Google Scholar 

  78. L.M. Williamson and D.V. Devine: Challenges in the management of the blood supply. Lancet 381, 1866 (2013).

    Article  Google Scholar 

  79. N. Shehata, A. Forster, N. Lawrence, D.M. Rothwell, D. Fergusson, A. Tinmouth, and K. Wilson: Changing trends in blood transfusion: an analysis of 244,013 hospitalizations. Transfusion 54, 2631 (2014).

    Article  Google Scholar 

  80. A. Greinacher, K. Fendrich, and W. Hoffmann: Demographic changes: the impact for safe blood supply. Transfus. Med. Hemother. 37, 141 (2010).

    Article  Google Scholar 

  81. T. Hovav, S. Yedgar, N. Manny, and G. Barshtein: Alteration of red cell aggregability and shape during blood storage. Transfusion 39, 277 (1999).

    Article  CAS  Google Scholar 

  82. C.A. Fraker, A.J. Mendez, and C.L. Stabler: Complementary methods for the determination of dissolved oxygen content in perfluorocarbon emulsions and other solutions. J. Phys. Chem. B 115, 10547 (2011).

    Article  CAS  Google Scholar 

  83. Z. Tao and P.P. Ghoroghchian: Microparticle, nanoparticle, and stem cell-based oxygen carriers as advanced blood substitutes. Trends Biotechnol. 32, 466 (2014).

    Article  CAS  Google Scholar 

  84. Y. Que, Y. Liu, W. Tan, C. Feng, P. Shi, Y. Li, and H. Xiaoyu: Enhancing photodynamic therapy efficacy by using fluorinated nanoplatform. ACS Macro Lett. 5, 168 (2016).

    Article  CAS  Google Scholar 

  85. R.A. Day, D.A. Estabrook, J.K. Logan, and E.M. Sletten: Fluorous photo-sensitizers enhance photodynamic therapy with perfluorocarbon nanoe-mulsions. Chem. Commun. 53, 13043 (2017).

    Article  CAS  Google Scholar 

  86. Y. Shen, A.J. Shuhendler, D. Ye, J.-J. Xu, and H.-Y. Chen: Two-photon excitation nanoparticles for photodynamic therapy. Chem. Soc. Rev. 45, 6725 (2016).

    Article  CAS  Google Scholar 

  87. S.S. Lucky, K.C. Soo, and Y. Zhang: Nanoparticles in photodynamic therapy. Chem. Rev. 115, 1990 (2015).

    Article  CAS  Google Scholar 

  88. J.G. Riess: Overview of progress in the fluorocarbon approach to in vivo oxygen delivery. Biomater Artif Cells Immobil. Biotechnol. 20, 183 (1992).

    CAS  Google Scholar 

  89. X. Song, L. Feng, C. Liang, K. Yang, and Z. Liu: Ultrasound triggered tumor oxygenation with oxygen-shuttle nanoperfluorocarbon to overcome hypoxia-associated resistance in cancer therapies. Nano Lett. 16, 6145 (2016).

    Article  CAS  Google Scholar 

  90. U. Flbgel, Z. Ding, H. Hardung, S. Jander, G. Reichmann, C. Jacoby, R. Schubert, and J. Schrader: In vivo monitoring of inflammation after cardiac and cerebral ischemia by fluorine magnetic resonance imaging. Circulation 118, 140 (2008).

    Article  Google Scholar 

  91. M. Srinivas, A. Heerschap, E.T. Ahrens, C.G. Figdor, and I.J.M. de Vries: 19F MRI for quantitative in vivo cell tracking. Trends Biotechnol. 28, 363 (2010).

    Article  CAS  Google Scholar 

  92. A.A. Kislukhin, H. Xu, S.R. Adams, K.H. Narsinh, R.Y. Tsien, and E. T. Ahrens: Paramagnetic fluorinated nanoemulsions for sensitive cellular fluorine-19 magnetic resonance imaging. Nat. Mater. 15, 662 (2016).

    Article  CAS  Google Scholar 

  93. Z. Guo, M. Gao, M. Song, Y. Li, D. Zhang, D. Xu, L. You, L. Wang, R. Zhuang, X. Su, T. Liu, J. Du, and X. Zhang: Superfluorinated PEI derivative coupled with 99mTc for ASGPR targeted 19F MRI/SPECT/PA Tri-modality imaging. Adv. Mater. 28, 5898 (2016).

    Article  CAS  Google Scholar 

  94. B.E. Rolfe, I. Blakey, O. Squires, H. Peng, N.R.B. Boase, C. Alexander, P. G. Parsons, G.M. Boyle, A.K. Whittaker, and K.J. Thurecht: Multimodal polymer nanoparticles with combined 19F magnetic resonance and optical detection fortunable, targeted, multimodal imaging in vivo. J. Am. Chem. Soc. 136, 2413 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant numbers 31771094 and 31371014). This work was also supported by the Natural Science Foundation key projects (grant numbers 31630027 and 31430031) and NSFC-DFG project (grant no. 31761133013). The authors also appreciate the support by the “Strategic Priority Research Program” of the Chinese Academy of Sciences (grant no. XDA09030301).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin-Feng Xing, Weisheng Guo or Xing-Jie Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Zhang, Q., Tian, JH. et al. Perfluorocarbon-based nanomedicine: emerging strategy for diagnosis and treatment of diseases. MRS Communications 8, 303–313 (2018). https://doi.org/10.1557/mrc.2018.49

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.49

Navigation