Skip to main content
Log in

Controllable directive radiation from dipole emitter coupled to dielectric nanowire antenna with substrate-mediated tunability

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The present work demonstrates controllable directive radiation of a dipolar emitter coupled to a substrate-supported dielectric nanowire antenna. Nanoactuators, transparent-conducting oxides, and graphene are integrated into the substrate, respectively, to establish tunable antenna platforms in visible, near-infrared (IR), and far-IR frequency regimes. We exploit the substrate-induced interference effects and tunability mechanisms in each antenna system to achieve directive radiation with real-time steering capability. The design and modeling are rigorously carried out using an efficient and accurate semi-analytical framework based on transition matrix formulation. Each configuration is optimized to achieve maximal steering range while attaining a proper gain. Owing to subwavelength footprint, enhanced directionality, real-time tunability, and fairly simple geometry, the proposed platforms are ideal candidates for nanoantenna synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. A. AID and N. Engheta: Wireless at the nanoscale: optical interconnects using matched nanoantennas. Phys. Rev. Lett. 104, 213902 (2010).

    Article  Google Scholar 

  2. Y. Yang, Q. Li, and M. Qiu: Broadband nanophotonic wireless links and networks using on-chip integrated plasmonic antennas. Sci. Rep. 6, 19490 (2016).

    Article  CAS  Google Scholar 

  3. A. Ahmadi, S. Ghadarghadr, and H. Mosallaei: An optical reflectarray nanoantenna: the concept and design. Opt. Express 18, 123 (2009).

    Article  Google Scholar 

  4. I. Maksymov, I. Staude, A. Miroshnichenko, and Y. Kivshar: Optical yagi-uda nanoantennas. Nanophotonics 1, 65–81 (2012).

    Article  Google Scholar 

  5. A. Patel and A. Grbic: A printed leaky-wave antenna based on a sinusoidally-modulated reactance surface. IEEE Trans. Antennas Propag. 59, 2087–2096 (2011).

    Article  Google Scholar 

  6. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. Moerner: Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat. Photonics 3, 654–657 (2009).

    Article  CAS  Google Scholar 

  7. E. Ureña, M. Kreuzer, S. Itzhakov, H. Rigneault, R. Quidant, D. Oron, and J. Wenger: Excitation enhancement of a quantum dot coupled to a plasmonic antenna. Adv. Mater. 24, OP314–OP320 (2012).

    Article  Google Scholar 

  8. D. Vercruysse, Y. Sonnefraud, N. Verellen, F. B. Fuchs, G. Martino, L. Lagae, V. Moshchalkov, S. Maier, and P. Dorpe: Unidirectional side scattering of light by a single-element nanoantenna. Nano Lett. 13, 3843–3849 (2013).

    Article  CAS  Google Scholar 

  9. A. Evlyukhin, C. Reinhardt, A. Seidel, B. Luk’yanchuk, and B. Chichkov: Optical response features of Si-nanoparticle arrays. Phys. Rev. B 82, 045404 (2010).

    Article  Google Scholar 

  10. A. Garcia-Etxarri, R. Gomez-Medina, L. S. Froufe-Perez, C. Lopez, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Saenz: Strong magnetic response of submicron Silicon particles in the infrared. Opt. Express 19, 4815–4826 (2011).

    Article  CAS  Google Scholar 

  11. P. Albella, T. Shibanuma, and S. Maier: Switchable directional scattering of electromagnetic radiation with subwavelength asymmetric silicon dimers. Sci. Rep. 5, 18322 (2015).

    Article  CAS  Google Scholar 

  12. Y. Fu, A. Kuznetsov, A. Miroshnichenko, Y. Yu, and B. Luk’yanchuk: Directional visible light scattering by silicon nanoparticles. Nat. Commun. 4, 1527 (2013).

    Article  Google Scholar 

  13. R. Thorsen and S. Arslanagic: Eccentrically-layered active coated nanoparticles for directive near- and far-field radiation. Photonics 2, 773–794 (2015).

    Article  CAS  Google Scholar 

  14. A. Krasnok, C. Simovski, P. Belov, and Y. Kivshar: Superdirective dielectric nanoantennas. Nanoscale 6, 7354 (2014).

    Article  CAS  Google Scholar 

  15. L. Novotny and B. Hecht: Principles of nano-optics, 1st ed. (Cambridge University Press, Cambridge, 2012).

    Book  Google Scholar 

  16. T. Coenen, F. Bernal Arango, A. Femius Koenderink, and A. Polman: Directional emission from a single plasmonic scatterer. Nat. Commun. 5, 3250 (2014).

    Article  Google Scholar 

  17. J. Van de Groep and A. Polman: Designing dielectric resonators on substrates: combining magnetic and electric resonances. Opt. Express 21, 26285 (2013).

    Article  Google Scholar 

  18. M. Salary and H. Mosallaei: Tailoring optical forces for nanoparticle manipulation on layered substrates. Phys. Rev. B 94, 035410 (2016).

    Article  Google Scholar 

  19. D. Markovich, P. Ginzburg, A. Samusev, P. Belov, and A. Zayats: Magnetic dipole radiation tailored by substrates: numerical investigation. Opt. Express 22, 10693 (2014).

    Article  CAS  Google Scholar 

  20. Y. Huang, H. Lee, R. Sokhoyan, R. Pala, K. Thyagarajan, S. Han, D. Tsai, and H. Atwater: Gate-tunable conducting oxide metasurfaces. Nano Lett. 16, 5319–5325 (2016).

    Article  CAS  Google Scholar 

  21. A. Forouzmand and H. Mosallaei: Tunable two dimensional optical beam steering with reconfigurable indium tin oxide plasmonic reflectarray metasurface. J. Opt. 18, 125003 (2016).

    Article  Google Scholar 

  22. M. Sherrott, P. Hon, K. Fountaine, J. Garcia, S. Ponti, V. Brar, L. Sweatlock, and H. Atwater: Experimental demonstration of >230° phase modulation in gate-tunable graphene-gold reconfigurable mid-infrared metasurfaces. Nano Lett. 17, 3027–3034 (2017).

    Article  CAS  Google Scholar 

  23. S. Momeni Hasan Abadi, J. Booske, and N. Behdad: MAcro-Electro-Mechanical Systems (M/EMS) based concept for microwave beam steering in reflectarray antennas. J. Appl. Phys. 120, 054901 (2016).

    Article  Google Scholar 

  24. J. Cheng, S. Jafar-Zanjani, and H. Mosallaei: Real-time two-dimensional beam steering with gate-tunable materials: a theoretical investigation. Appl. Opt. 55, 6137 (2016).

    Article  Google Scholar 

  25. M. Esquius-Morote, J. Gomez-Diaz, and J. Perruisseau-Carrier: Sinusoidally modulated graphene leaky-wave antenna for electronic beamscanning at THz. IEEE Trans. Terahertz Sci. Technol. 4, 116–122 (2014).

    Article  Google Scholar 

  26. A. Burke, D. Carrad, J. Gluschke, K. Storm, S. Fahlvik Svensson, H. Linke, L. Samuelson, and A. Micolich: InAs nanowire transistors with multiple, independent wrap-gate segments. Nano Lett. 15, 2836–2843 (2015).

    Article  CAS  Google Scholar 

  27. X. Duan, Y. Huang, Y. Cui, J. Wang, and C. Lieber: Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409, 66–69 (2001).

    Article  CAS  Google Scholar 

  28. M. Mishchenko, N. Zakharova, N. Khlebtsov, G. Videen, and T. Wriedt: Comprehensive thematic T-matrix reference database: a 2015-2017 update. J. Quant. Spectrosc. Radiat. Transf. 202, 240–246 (2017).

    Article  CAS  Google Scholar 

  29. M. Salary, M. Nazari, and H. Mosallaei: Robust technique for computation of scattering and absorption of light by array of nanowires on layered substrate. J. Opt. Soc. Am. B 32, 2448 (2015).

    Article  Google Scholar 

  30. M. Salary, S. Jafar-Zanjani, and H. Mosallaei: Electromagnetic scattering from Bi-periodic fabric structures. Prog. Electromagn. Res. B 72, 31–47 (2017).

    Article  Google Scholar 

  31. A. Holsteen, S. Raza, P. Fan, P. Kik, and M. Brongersma: Purcell effect for active tuning of light scattering from semiconductor optical antennas. Science 358, 1407–1410 (2017).

    Article  CAS  Google Scholar 

  32. M. Unlu and M. Jarrahi: Miniature multi-contact MEMS switch for broadband terahertz modulation. Opt. Express 22, 32245 (2014).

    Article  CAS  Google Scholar 

  33. X. Zhao, K. Fan, J. Zhang, G. Keiser, G. Duan, R. Averitt, and X. Zhang: Voltage-tunable dual-layer terahertz metamaterials. Microsyst. Nanoeng. 2, 16025 (2016).

    Article  Google Scholar 

  34. V. Yakovlevich Prinz, V. Alexandrovich Seleznev, A. Victorovich Prinz, and A. Vladimirovich Kopylov: 3D heterostructures and systems for novel MEMS/NEMS. Sci. Technol. Adv. Mater. 10, 034502 (2009).

    Article  Google Scholar 

  35. E. Palik: Handbook of optical constants of solids, 1st ed. (Academic Press, Orlando, 1985).

    Google Scholar 

  36. P. Johnson and R. Christy: Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972).

    Article  CAS  Google Scholar 

  37. E. Feigenbaum, K. Diest, and H. Atwater: Unity-order index change in transparent conducting oxides at visible frequencies. Nano Lett. 10, 2111–2116 (2010).

    Article  CAS  Google Scholar 

  38. G. Hanson: Dyadic green’s functions and guided surface waves for a surface conductivity model of graphene. J. Appl. Phys. 103, 064302 (2008).

    Article  Google Scholar 

  39. D. Efetov and P. Kim: Controlling electron-phonon interactions in graphene at ultrahigh carrier densities. Phys. Rev. Lett. 105, 256805 (2010).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to acknowledge the supports from US Air Force Office of Scientific Research (AFOSR) FA9550-14-1-0349, US Army Research Office W911NF-15-1-0138, and Defense Advanced Research Projects Agency (DARPA) N00014-14-1-0850.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Mosallaei.

Supplementary materials

Supplementary materials

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2018.46

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salary, M.M., Forouzmand, A. & Mosallaei, H. Controllable directive radiation from dipole emitter coupled to dielectric nanowire antenna with substrate-mediated tunability. MRS Communications 8, 437–445 (2018). https://doi.org/10.1557/mrc.2018.46

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.46

Navigation