Skip to main content
Log in

Circular dichroism in the interband transitions of achiral metal nanoparticles: TiN and noble metals

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

A longitudinal field component parallel to the wave vector is generally considered in nonlocal optical response. Longitudinal volume plasmons accompanied by inhomogeneous internal field optically break symmetry for isotropic metal nanoparticles. Here, natural circular dichroism in the interband transitions of TiN nanocubes, Au nanospheres, and Cu nanospheres in solution is presented. A field gradient or volume plasmons exert an electric force and consequently Lorentz force on bound valence-band electrons inside the nanoparticles. It is generalized that interband transitions in nanoparticles intrinsically produce a positive rotational strength and optical right-handedness. Electromechanical chir-alty is introduced to explain the optical activity of achiral nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. G.H. Wagniere: On Chirality and the Universal Asymmetry (VHCA & Wiley-VCH, Zurich, 2007).

    Book  Google Scholar 

  2. M.V. Mukhina, V.G. Maslov, A.V. Baranov, A.V. Fedorov, A.O. Orlova, F. Purcell-Milton, J. Govan, and Y.K. Gun’ko: Intrinsic chirality of CdSe/ ZnS quantum dots and quantum rods. Nano Lett. 15, 2844 (2015).

    Article  CAS  Google Scholar 

  3. T. Okuda, and A. Kimura: Spin- and angle-resolved photoemission of strongly spin-orbit coupled systems. J. Phys. Soc. Jpn. 82, 021002 (2013).

    Article  Google Scholar 

  4. C.F. Bohren: Light scattering by an optically active sphere. Chem. Phys. Lett. 29, 458 (1974).

    Article  CAS  Google Scholar 

  5. J.-W. Park: Observation of intrinsic chirality of surface plasmon resonances in single nanocrystals. arXiv:1803.00547 [cond-mat.mes-hall].

  6. J.J. Hopfield, and D.G. Thomas: Theoretical and experimental effects of spatial dispersion on the optical properties of crystals. Phys. Rev. 132, 563 (1963).

    Article  CAS  Google Scholar 

  7. S. Shokhovets, O. Ambacher, B.K. Meyer, and G. Gobsch: Anisotropy of the momentum matrix element, dichroism, and conduction-band dispersion relation of wurtzite semiconductors. Phys. Rev. B 78, 035207 (2008).

    Article  Google Scholar 

  8. V.P. Mineev, and Yu. Yoshioka: Optical activity of noncentrosymmetric metals. Phys. Rev. B 81, 094525 (2010).

    Article  Google Scholar 

  9. V.M. Agranovich, and V.L. Ginzburg: Spatial Dispersion in Crystal Optics and the Theory of Excitons (Interscience Publishers, London, 1966).

    Google Scholar 

  10. S.F. Mason: Molecular Optical Activity and the Chiral Discriminations (Cambridge Univ. Press, Cambridge, 1982).

    Google Scholar 

  11. G.M. Wysin, V. Chikan, N. Young, and R.K. Dani: Effects of interband transitions on Faraday rotation in metallic nanoparticles. J. Phys: Condens. Matter 25, 325302 (2013).

    CAS  Google Scholar 

  12. R.P. Cameron, J.B. Götte, S.M. Barnett, and A.M. Yao: Chirality and the angular momentum of light. Phil. Trans. R. Soc. A 375, 20150433 (2017).

    Article  Google Scholar 

  13. W. Kuhn: The physical significance of optical rotatory power. Trans. Faraday Soc. 26, 293 (1930).

    Article  CAS  Google Scholar 

  14. A.Ya. Bekshaev, O.V. Angelsky, S.G. Hanson, and C.Yu. Zenkova: Scattering of inhomogeneous circularly polarized optical field and mechanical manifestation of the internal energy flows. Phys. Rev. A 86, 023847 (2012).

    Article  Google Scholar 

  15. L.T. Vuong, A.J.L. Adam, J.M. Brok, P.C.M. Planken, and H.P. Urbach: Electromagnetic spin-orbit interactions via scattering of subwavelength apertures. Phys. Rev. Lett. 104, 083903 (2010).

    Article  CAS  Google Scholar 

  16. M. Kang, Q.-H. Guo, J. Chen, B. Gu, Y. Li, and H.-T. Wang: Near-field phase singularity in subwavelength metallic microstructures. Phys. Rev. A 84, 045803 (2011).

    Article  Google Scholar 

  17. P.F. Chimento, P.F.A. Alkemade, G.W.’ t Hooft, and E.R. Eliel: Optical angular momentum conversion in a nanoslit. Opt. Lett. 37, 4946 (2012).

    Article  Google Scholar 

  18. Z.B. Wang, B.S. Luk’yanchuk, M.H. Hong, Y. Lin, and T.C. Chong: Energy flow around a small particle investigated by classical Mie theory. Phys. flei 70, 035418 (2004).

    Google Scholar 

  19. A. Aid, and N. Engheta: Higher-order resonant power flow inside and around superdirective plasmonic nanoparticles. J. Opt. Soc. Am. B 24, A89 (2007).

    Article  Google Scholar 

  20. G.F. Quinteiro, F. Schmidt-Kaler, and C.T. Schmiegelow: Twisted-light-ion interaction: the role of longitudinal fields. Phys. Rev. Lett. 119, 253203 (2017).

    Article  CAS  Google Scholar 

  21. A. Afanasev, C.E. Carlson, and M. Solyanik: Circular dichroism of twisted photons in non-chiral atomic matter. J. Opt. 19, 105401 (2017).

    Article  Google Scholar 

  22. N.D. Singh, M. Moocarme, B. Edelstein, N. Punnoose, and L.T. Vuong: Anomalously-large photo-induced magnetic response of metallic nano-colloids in aqueous solution using a solar simulator. Opt. Express 20, 19214 (2012).

    Article  CAS  Google Scholar 

  23. R. Hertel: Theory of the inverse Faraday effect in metals. J. Magn. Magn. Mater. 303, L1–L4 (2006).

    Article  CAS  Google Scholar 

  24. R. Hertel, and M. Fannie: Macroscopic drift current in the inverse Faraday effect. Phys. Rev. B 91, 020411 (R) (2015).

    Article  Google Scholar 

  25. J.M. McMahon, S.K. Gray, and G.C. Schatz: Nonlocal optical response of metal nanostructures with arbitrary shape. Phys. Rev. Lett. 103, 097403 (2009).

    Article  Google Scholar 

  26. S. Adachi, and M. Takahashi: Optical properties of TiN films deposited by direct current reactive sputtering. J. Appl. Phys. 87, 1264 (2000).

    Article  CAS  Google Scholar 

  27. Y. Gu, and K.G. Kornev: Plasmon enhanced direct and inverse Faraday effects in non-magnetic nanocomposites. J. Opt. Soc. Am. B 27, 2165 (2010).

    Article  CAS  Google Scholar 

  28. M. Durach, and N. Noginova: Spin angular momentum transfer and plasmogalvanic phenomena. Phys. Rev. B 96, 195411 (2017).

    Article  Google Scholar 

  29. H. Kontani, T. Tanaka, D.S. Hirashima, K. Yamada, and J. Inoue: Giant orbital hall effect in transition metals: origin of large spin and anomalous hall effects. Phys. Rev. Lett. 102, 016601 (2009).

    Article  CAS  Google Scholar 

  30. J. Van Bree, A.Yu. Silov, P.M. Koenraad, and M.E. Flatte: Spin-orbit-induced circulating currents in a semiconductor nanostructure. Phys. Rev. Lett. 112, 187201 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Won Park.

Electronic supplementary material

43579_2018_8020459_MOESM1_ESM.pdf

Supplementary Material: Circular dichroism in the interband transitions of achiral metal nanoparticles: TiN and noble metals

Supplementary material

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2018.40

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, JW. Circular dichroism in the interband transitions of achiral metal nanoparticles: TiN and noble metals. MRS Communications 8, 459–465 (2018). https://doi.org/10.1557/mrc.2018.40

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.40

Navigation