Skip to main content

Advertisement

Log in

Theoretical study of cubic-Li7La3Zr2O12(001)/LiCoO2(10-14) interface

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

In this work, using density functional theory we study electronic and atomic structure as well as redistribution of ions at the interface between cubic-Li7La3Zr2O12 (LLZO) (001) and LiCoO2 (LCO) (10-14). It is found that a large lattice-mismatch-induced compressive strain of ~12% at the interface leads to disordering of LLZO (001). However, even a large tensile strain of ~13.5% does not influence ordering of LCO (10-14). Li ions tend to move from the surface of LCO and bulk LLZO to occupy the interstitial sites at the topmost layers of the LLZO slab. Li ion transfer from LCO to LLZO accompanies with electron transfer from the former to the latter and the formation of gap states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. C. Masquelier: Solid electrolytes: lithium ions on the fast track. Nat. Mater. 10, 649 (2011).

    Article  CAS  Google Scholar 

  2. J-M. Tarascon and M. Armand: Issues and challenges facing rechargeable lithium batteries. Nature 414(6861), 359–367 (2001).

    Article  CAS  Google Scholar 

  3. J. Hassoun and B. Scrosati: Moving to a solid-state configuration: a valid approach to making lithium-sulfur batteries viable for practical applications. Adv. Mater. 22, 5198–5201 (2010).

    Article  CAS  Google Scholar 

  4. H. Zhong, C. Wang, Z. Xu, F. Ding, and X. Liu: A novel quasi-solid state electrolyte with highly effective polysulfide diffusion inhibition for lithium-sulfur batteries. Sci. Rep. 6, 25484 (2016).

    Article  CAS  Google Scholar 

  5. V. Thangadurai, H. Kaack, and W. Weppner: Novel fast lithium ion conduction in garnet-type Li5La3M2O12 (M = Nb, Ta). J. Am. Ceram. Soc. 86, 437–440 (2003).

    Article  CAS  Google Scholar 

  6. V. Thangadurai and W. Weppner: Li6ALa2Ta2O12 (A = Sr, Ba): novel garnet-like oxides for fast lithium ion conduction. Adv. Funct. Mater. 15, 107–112 (2005).

    Article  CAS  Google Scholar 

  7. V. Thangadurai and W. Weppner: Li6ALa2Nb2O12 (A = Ca, Sr, Ba): a new class of fast lithium ion conductors with garnet-like structure. J. Am. Ceram. Soc. 88, 411–418 (2005).

    Article  CAS  Google Scholar 

  8. R. Murugan, V. Thangadurai, and W. Weppner: Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem., Int. Ed. 46, 7778–7781 (2007).

    Article  CAS  Google Scholar 

  9. J. Awaka, A. Takashima, K. Kataoka, N. Kijima, Y. Idemoto, and J. Akimoto: Crystal structure of fast lithium-ion-conducting cubic Li7La3Zr2O12. Chem. Lett. 40, 60–62 (2010).

    Article  CAS  Google Scholar 

  10. Y. Shimonishi, A. Toda, T. Zhang, A. Hirano, N. Imanishi, O. Yamamoto, and Y. Takeda: Synthesis of garnet-type Li7-xLa3Zr2O12-1/2x and its stability in aqueous solutions. Solid State Ion. 183, 48–53 (2011).

    Article  CAS  Google Scholar 

  11. R. Murugan, S. Ramakumar, and N. Janani: High conductive yttrium doped Li7La3Zr2O12 cubic lithium garnet. Electrochem. Commun. 13, 1373–1375 (2011).

    Article  CAS  Google Scholar 

  12. Y. Wang and W. Lai: High ionic conductivity lithium garnet oxides of Li7-xLa3Zr2-xTaxO12 compositions. Electrochem. Solid-State Lett. 15, A68–A71 (2012).

    Article  CAS  Google Scholar 

  13. Y. Zhu, X. He, and Y. Mo: Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl. Mater. Interfaces 7, 23685–23693 (2015).

    Article  CAS  Google Scholar 

  14. Y. Zhu, X. He, and Y. Mo: First principles study on electrochemical and chemical stability of solid electrolyte-electrode interfaces in all-solid-state Li-ion batteries. J. Mater. Chem. A 4, 3253–3266 (2016).

    Article  CAS  Google Scholar 

  15. T. Thompson, S. Yu, L. Williams, R.D. Schmidt, R. Garcia-Mendez, J. Wolfenstine, J.L. Allen, E. Kioupakis, D.J. Siegel, and J. Sakamoto: Electrochemical window of the Li-ion solid electrolyte Li7La3Zr2O12. ACS Energy Lett. 2, 462–468 (2017).

    Article  CAS  Google Scholar 

  16. R. Koksbang, J. Barker, H. Shi, and M.Y. Saidi: Cathode materials for lithium rocking chair batteries. Solid State Ion. 84, 1–21 (1996).

    Article  CAS  Google Scholar 

  17. K. Mizushima, P.C. Jones, P.J. Wiseman, and J.B. Goodenough: LixCoO2 (0 > x = 1): a new cathode material for batteries of high energy density. Solid State Ion. 3, 171–174 (1981).

    Article  Google Scholar 

  18. K. Mizushima, P.C. Jones, P.J. Wiseman, and J.B. Goodenough: LixCoO2 (0 > x>-1): a new cathode material for batteries of high energy density. Mater. Res. Bull. 15, 783–789 (1980).

    Article  CAS  Google Scholar 

  19. T. Ohzuku and A. Ueda: Why transition metal (di) oxides are the most attractive materials for batteries. Solid State Ion. 69, 201–211 (1994).

    Article  CAS  Google Scholar 

  20. A. Du Pasquier, I. Plitz, S. Menocal, and G. Amatucci: A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications. J. Power Sources 115, 171–178 (2003).

    Article  CAS  Google Scholar 

  21. Y. Ren, T. Liu, Y. Shen, Y. Lin, and C-W. Nan: Chemical compatibility between garnet-like solid state electrolyte Li6.75La3Zr1.75Ta0.25O12 and major commercial lithium battery cathode materials. J. Materiomics 2, 256–264 (2016).

    Article  Google Scholar 

  22. K. Takada, N. Ohta, L. Zhang, K. Fukuda, I. Sakaguchi, R. Ma, M. Osada, and T. Sasaki: Interfacial modification for high-power solid-state lithium batteries. Solid State Ion. 179, 1333–1337 (2008).

    Article  CAS  Google Scholar 

  23. K.H. Kim, Y. Iriyama, K. Yamamoto, S. Kumazaki, T. Asaka, K. Tanabe, C.A.J. Fisher, T. Hirayama, R. Murugan, and Z. Ogumi: Characterization of the interface between LixCoO2 and Li7La3Zr2O12 in an all-solid-state rechargeable lithium battery. J. Power Sources 196, 764–767 (2011).

    Article  CAS  Google Scholar 

  24. K. Park, B-C. Yu, J-W. Jung, Y. Li, W. Zhou, H. Gao, S. Son, and J.B. Goodenough: Electrochemical nature of the cathode interface for a solid-state lithium-ion battery: interface between LiCoO2 and Garnet-Li7La3Zr2O12. Chem. Mater. 28, 8051–8059 (2016).

    Article  CAS  Google Scholar 

  25. M. Sumita, Y. Tanaka, M. Ikeda, and T. Ohno: Theoretically designed Li3PO4(100)/LiFePO4(010) coherent electrolyte/cathode interface for all solid-state Li ion secondary batteries. J. Phys. Chem. C 119, 14–22 (2014).

    Article  CAS  Google Scholar 

  26. M. Sumita, Y. Tanaka, M. Ikeda, and T. Ohno: Charged and discharged states of cathode/sulfide electrolyte interfaces in all-solid-state lithium ion batteries. J. Phys. Chem. C 120, 13332–13339 (2016).

    Article  CAS  Google Scholar 

  27. J. Haruyama, K. Sodeyama, L. Han, K. Takada, and Y. Tateyama: Space-charge layer effect at interface between oxide cathode and sulfide electrolyte in all-solid-state lithium-ion battery. Chem. Mater. 26, 4248–4255 (2014).

    Article  CAS  Google Scholar 

  28. G. Lippert, J. Hutter, and M. Parrinello: A hybrid Gaussian and plane wave density functional scheme. Mol. Phys. 92, 477–488 (1997).

    Article  CAS  Google Scholar 

  29. G. Lippert, J. Hutter, and M. Parrinello: The Gaussian and augmented-plane-wave density functional method for ab initio molecular dynamics simulations. Theor. Chem. Acc. (Theoret. Chim. Acta) 103, 124–140 (1999).

    Article  CAS  Google Scholar 

  30. J. VandeVondele, and J. Hutter: An efficient orbital transformation method for electronic structure calculations. J. Chem. Phys. 118, 4365–4369 (2003).

    Article  CAS  Google Scholar 

  31. J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, and J. Hutter: Quickstep: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 167, 103–128 (2005).

    Article  CAS  Google Scholar 

  32. J.P. Perdew, K. Burke, and M. Ernzerhof: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  33. S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, and A.P. Sutton: Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA + U study. Phys. Rev. B 57, 1505 (1998).

    Article  CAS  Google Scholar 

  34. P. Ghosh, S. Mahanty, M.W. Raja, R.N. Basu, and H.S. Maiti: Structure and optical absorption of combustion-synthesized nanocrystalline LiCoO2. J. Mater. Res. 22, 1162–1167 (2007).

    Article  CAS  Google Scholar 

  35. K. Kushida and K. Kuriyama: Narrowing of the co-3d band related to the order-disorder phase transition in LiCoO2. Solid State Commun.. 123, 349–352 (2002).

    Article  CAS  Google Scholar 

  36. J.M. Rosolen and F. Decker: Photoelectrochemical behavior of LiCoO2 membrane electrode. J. Electroanal. Chem. 501, 253–259 (2001).

    Article  CAS  Google Scholar 

  37. J. Van Elp, J.L. Wieland, H. Eskes, P. Kuiper, G.A. Sawatzky, F.M.F. De Groot, and T.S. Turner: Electronic structure of coo, Li-doped coo, and LiCoO2. Phys. Rev. B 44, 6090 (1991).

    Article  Google Scholar 

  38. L.J. Miara, S.P. Ong, Y. Mo, W.D. Richards, Y. Park, J-M. Lee, H.S. Lee, and G. Ceder: Effect of Rb and Ta doping on the ionic conductivity and stability of the garnet Li7+2x-y(La3-xRbx)(Zr2-yTay)O12 (0 = x = 0.375, 0 = y = 1) superionic conductor: a first principles investigation. Chem. Mater. 25, 3048–3055 (2013).

    Article  CAS  Google Scholar 

  39. K.C. Santosh, R.C. Longo, K. Xiong, and K. Cho: Point defects in garnet-type solid electrolyte (c-Li7La3Zr2O12) for Li-ion batteries. Solid State Ion. 261, 100–105 (2014).

    Article  CAS  Google Scholar 

  40. R. Jalem, Y. Yamamoto, H. Shiiba, M. Nakayama, H. Munakata, T. Kasuga, and K. Kanamura: Concerted migration mechanism in the Li ion dynamics of garnet-type Li7La3Zr2O12. Chem. Mater. 25, 425–430 (2013).

    Article  CAS  Google Scholar 

  41. L.J. Miara, W.D. Richards, Y.E. Wang, and G. Ceder: First-principles studies on cation dopants and electrolyte-cathode interphases for lithium garnets. Chem. Mater. 27, 4040–4047 (2015).

    Article  CAS  Google Scholar 

  42. K. Meier, T. Laino, and A. Curioni: Solid-state electrolytes: revealing the mechanisms of Li-ion conduction in tetragonal and cubic LLZO by first-principles calculations. J. Phys. Chem. C 118, 6668–6679 (2014).

    Article  CAS  Google Scholar 

  43. S. Goedecker, M. Teter, and J. Hutter: Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703 (1996).

    Article  CAS  Google Scholar 

  44. D. Ensling, A. Thissen, S. Laubach, P.C. Schmidt, and W. Jaegermann: Electronic structure of LiCoO2 thin films: a combined photoemission spectroscopy and density functional theory study. Phys. Rev. B 82, 195431 (2010).

    Article  CAS  Google Scholar 

  45. I. Rodrigues, J. Wontcheu, and D.D. MacNeil: Post-synthetic treatments on NixMnxCo1-2x(OH)2 for the preparation of lithium metal oxides. Mater. Res. Bull. 46, 1878–1886 (2011).

    Article  CAS  Google Scholar 

  46. S. Panahian Jand and P. Kaghazchi: The role of electrostatic effects in determining the structure of LiF-graphene interfaces. J. Phys.: Condens. Matter 26, 262001 (2014).

    CAS  Google Scholar 

  47. M. Okubo, E. Hosono, J. Kim, M. Enomoto, N. Kojima, T. Kudo, H. Zhou, and I. Honma: Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode. J. Am. Chem. Soc. 129, 7444–7452 (2007).

    Article  CAS  Google Scholar 

  48. D. Kramer and G. Ceder: Tailoring the morphology of LiCoO2: a first principles study. Chem. Mater. 21, 3799–3809 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge support from the “Bundesministerium für Bildung und Forschung” (BMBF), and the computing time granted on Zentraleinrichtung für Datenverarbeitung (ZEDAT) at the Freie Universität Berlin. The authors also acknowledge the North-German Supercomputing Alliance (HLRN) for providing high-performance computing resources that have contributed to the research results reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Payam Kaghazchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jand, S.P., Kaghazchi, P. Theoretical study of cubic-Li7La3Zr2O12(001)/LiCoO2(10-14) interface. MRS Communications 8, 591–596 (2018). https://doi.org/10.1557/mrc.2018.33

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.33

Navigation