Skip to main content

Advertisement

Log in

Preparation of nanosized porous oxide layers on titanium by asymmetric AC electrolysis in sulfuric acid

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The formation of nanosized porous oxide layers on titanium (Ti) by asymmetric alternating current anodizing in sulfuric acid has been studied using electrochemical techniques. In order to prevent spark discharge at Ti electrode upon its anodization in 1.0 M H2S04 solution, the magnitude of the cathodic current is reduced using a special electrical circuit consisting of a variable resistor and two diodes. The unique surface treatment approach gives rise to the formation of nanosized porous layer in a very short period of time and without spark discharge. The surface of porous layers thus obtained has in vitro apatite-forming ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  1. H.M. Kim, F. Miyaji, T. Kokubo, and T. Nakamura: Effect of heat treatment on apatite-forming ability of Ti metal induced by alkali treatment. J. Mater. Sci.: Mater. Med. 8, 341 (1997).

    CAS  Google Scholar 

  2. H.M. Kim, F. Miyaji, T. Kokubo, and T. Nakamura: Apatite-forming ability of alkali-treated Ti metal in body environment. J. Ceram. Soc. Jpn. 105, 111 (1997).

    Article  CAS  Google Scholar 

  3. H.M. Kim, F. Miyaji, T. Kokubo, S. Nishiguchi, and T. Nakamura: Graded surface structure of bioactive titanium prepared by chemical treatment. J. Biomed. Mater. Res. 45, 100 (1999).

    Article  CAS  Google Scholar 

  4. P. Ducheyne, W.V. Raemdonck, J.C. Heughebaert, and M. Heughebaert: Structural analysis of hydroxyapatite coatings on titanium. Biomaterials 7, 97 (1986).

    Article  CAS  Google Scholar 

  5. K.A. Thomas, J.F. Kay, S.D. Cook, and M. Jarcho: The effect of surface macrotexture and hydroxylapatite coating on the mechanical strengths and histologic profiles of titanium implant materials. J. Biomed. Mater. fles. 21, 1395 (1987).

    Article  CAS  Google Scholar 

  6. V.N. Bagratashvili, E.N. Antonov, E.N. Sobol, V.K. Popov, and S.M. Howdle: Macroparticle distribution and chemical composition of laser deposited apatite coatings. Appl. Phys. Lett. 66, 2451 (1995).

    Article  CAS  Google Scholar 

  7. J. Lee and H. Aoki: Hydroxyapatite coating on Ti plate by a dipping method. Biomed. Mater. Eng. 5, 49 (1995).

    CAS  Google Scholar 

  8. P. Li, K. Groot, and T. Kokubo: Bioactive Ca10(P04)6(0H)2-Ti02 composite coating prepared by sol-gel process. J. Sol-Gel Sci. Technol. 7, 27 (1996).

    Article  CAS  Google Scholar 

  9. P. Ducheyne, S. Radin, M. Heughebaert, and J.C. Heughebaert: Calcium phosphate ceramic coatings on porous titanium: effect of structure and compositionon electrophoretic deposition, vacuum sintering and in vitro dissolution. Biomaterials 11, 244 (1990).

    Article  CAS  Google Scholar 

  10. M. Gottlander, C.B. Johansson, A. Wennerberg, T. Albrektsson, S. Radin, and P. Ducheyne: Bone tissue reactions to an electrophoretically applied calcium phosphate coating. Biomaterials 18, 551 (1997).

    Article  CAS  Google Scholar 

  11. S. Tanaka, M. Aonuma, N. Hirose, and T. Tanaki: The preparation of porous Ti02 by immersing Ti in NaOH solution. J. Electrochem. Soc. 149, D167 (2002).

    Article  CAS  Google Scholar 

  12. S. Tanaka, T. Iwatani, N. Hirose, and T. Tanaki: Effect of hydrogen on the formation of porous Ti02 in alkaline solution. J. Electrochem. Soc. 149, F186 (2002).

    Article  CAS  Google Scholar 

  13. S. Tanaka, N. Hirose, and T. Tanaki: Effect of the temperature and concentration of NaOH on the formation of porous Ti02. J. Electrochem. Soc. 152, C789 (2005).

    Article  CAS  Google Scholar 

  14. S. Tanaka, H. Tobinatsu, Y. Maruyama, T. Tanaki, and G. Jerkiewicz: Preparation and characterization of microporous layers on titanium. ACS Appl. Mater. Interfaces 1, 2312 (2009).

    Article  CAS  Google Scholar 

  15. T. Ohtsuka and N. Nomura: The dependence of the optical property of Ti anodic oxide film on its growth rate byellipsometry. Corros. Sci. 39, 1253 (1997).

    Article  CAS  Google Scholar 

  16. K.H. Kim and N. Ramaswamy: Electrochemical surface modification of titanium in dentistry. Dent. Mater. J. 28, 20 (2009).

    Article  CAS  Google Scholar 

  17. B. Yang, M. Uchida, H.M. Kim, X. Zhang, and T. Kokubo: Preparation of bioactive titanium metal via anodic oxidation treatment. Biomaterials 25, 1003 (2004).

    Article  CAS  Google Scholar 

  18. Y.H. Shih, C.T. Lin, C.M. Liu, C.C. Chen, C.S. Chen, and K.L. Ou: Effect of nano-titanium hydride on formation of multi-nanoporous Ti02 film on Ti. Appl. Surf. Sci. 253, 3678 (2007).

    Article  CAS  Google Scholar 

  19. S. Tanaka, Y. Fukushima, I. Nakamura, T. Tanaki, and G. Jerkiewicz: Preparation and characterization of microporous layers on titanium by anodization in sulfuric acid with and without hydrogen charging. ACS Appl. Mater. Interfaces 5, 3340 (2013).

    Article  CAS  Google Scholar 

  20. S. Hrapovic, B.L. Luan, M.D. Amours, G. Vatankhah, and G. Jerkiewicz: Morphology, chemical composition, and electrochemical characteristics of colored titanium passive layers. Langmuir 17, 3051 (2001).

    Article  CAS  Google Scholar 

  21. G. Jerkiewicz, B. Zhao, S. Hrapovic, and B.L. Luan: Discovery of reversible switching of coloration of passive layers on titanium. Chem. Matter. 20, 1877 (2008).

    Article  CAS  Google Scholar 

  22. B. Zhao and G. Jerkiewicz: Electrochemically formed passive layers on titanium—Preparation and biocompatibility assessment in Hank’s balanced salt solution. Canadian J. Chem. 84, 1132 (2006).

    Article  CAS  Google Scholar 

  23. J. Drunen, B. Zhao, and G. Jerkiewicz: Corrosion behavior of surface-modified titanium in a simulated body fluid. J. Mater. Sci. 46, 5931 (2011).

    Article  Google Scholar 

  24. B.E. Conway and G. Jerkiewicz: Factors in the electrolytic sorption of H into metals and its relation to cathodic hydrogen evolution kinetics. Zeitschrift Physik. Chemie 183, 281 (1994).

    Article  CAS  Google Scholar 

  25. G. Jerkiewicz and A. Zolfaghari: Comparison of hydrogen electroadsorption from the electrolyte with hydrogen adsorption from the gas phase. J. Electrochem. Soc. 143, 1240 (1996).

    Article  CAS  Google Scholar 

  26. G. Jerkiewicz: Hydrogen sorption at/in electrodes. Prog. Surf. Sci. 57, 137 (1998).

    Article  CAS  Google Scholar 

  27. S.Y. Qian, B.E. Conway, and G. Jerkiewicz: Comparative effects of adsorbed S-species on H sorption into Pd from UPD and OPD H: a kinetic analysis. Int. J. Hydrogen Energy 25, 539 (2000).

    Article  CAS  Google Scholar 

  28. T. Kokubo and H. Takadama: How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27, 2907 (2006).

    Article  CAS  Google Scholar 

  29. N.Y. Iwata, G.H. Lee, S. Tsunakawa, Y. Tokuoka, and N. Kawashima: Preparation of diopside with apatite-forming ability by sol-gel process using metal alkoxide and metal salts. Colloid. Surf. B: Biointerfaces 33, 1 (2004).

    Article  CAS  Google Scholar 

  30. N.Y. Iwata, G.H. Lee, Y. Tokuoka, and N. Kawashima: Sintering behavior and apatite formation of diopside prepared by coprecipitation process. Colloid. Surf. B: Biointerfaces 34, 239 (2004).

    Article  CAS  Google Scholar 

  31. F. Xiao, K. Tsuru, S. Hayakawa, and A. Osaka: In vitro apatite deposition on titania film derived from chemical treatment of Ti substrates with an oxysulfate solution containing hydrogen peroxide at low temperature. Thin Solid Films 441, 271 (2003).

    Article  CAS  Google Scholar 

  32. T. Kasuga, H. Kondo, and M. Nogami: Apatite formation on Ti02 in simulated body fluid. J. Crystal Growth 235, 235 (2002).

    Article  CAS  Google Scholar 

  33. T. Kokubo, H.M. Kim, and M. Kawashita: Novel bioactive materials with different mechanical properties. Biomaterials 24, 2161 (2003).

    Article  CAS  Google Scholar 

  34. Q. Ma, M. Li, Z. Hu, Q. Chen, and W. Hu: Enhancement of the bioactivity of titanium oxide nanotubes by precalcification. Mater. Lett. 62, 3035 (2008).

    Article  CAS  Google Scholar 

  35. K. Shimogori: Hydrogen absorption by titanium. Boshoku Gijutsu 30, 349 (1981).

    CAS  Google Scholar 

  36. T. Fukuzuka, K. Shimogori, H. Satoh, and H. Tomari: The effect of dissolved oxygen on prevention of hydrogen absorption of titanium in dilute HCI solutions. Boshoku Gijutsu 28, 379 (1979).

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank to Daniel Morrall (Kyoto University) for his valuable comments on this manuscript. This work was supported by JSPS KAKENHI Grant Number JP24550241. A part of this work was financed by the Light Metal Educational Foundation, Inc., Japan. In addition, this work was partially funded by the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noriyuki Y. Iwata.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iwata, N.Y., Tanaka, Si., Fukushima, Y. et al. Preparation of nanosized porous oxide layers on titanium by asymmetric AC electrolysis in sulfuric acid. MRS Communications 9, 194–202 (2019). https://doi.org/10.1557/mrc.2018.237

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.237

Navigation