Skip to main content
Log in

PCBM nanoparticles as visible-light-driven photocatalysts for photocatalytic decomposition of organic dyes

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

[6,6]-Phenyl-C61-butyric acid methyl esters (PCBM) have emerged in recent years as important building blocks for photovoltaic devices. However, the potential of PCBM itself as a photocatalyst has not been reviewed. Here, we demonstrate PCBM nanoparticles (NPs) fabricated by the reprecipitation method as suitable photocatalysts for an effective visible-light-driven photocatalytic degradation for organic dyes. An enhanced catalytic performance of PCBM can be achieved by a simple annealing process. The present PCBM NPs outperform the state-of-the-art P25 TiO2 and therefore highlights its potential as promising small molecule organic semiconductor photocatalysts with high photocatalytic activity and good long-term stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. F. Zhang, J. Zhao, T. Shen, H. Hidaka, E. Pelizzetti, and N. Serpone: TiO2-assisted photodegradation of dye pollutants II. Adsorption and degradation kinetics of eosin in TiO2 dispersions under visible light irradiation. Appl. Catal., B 15, 147 (1998).

    Article  Google Scholar 

  2. T.W. Woolerton, S. Sheard, E. Reisner, E. Pierce, S.W. Ragsdale, and F.A. Armstrong: Efficient and clean photoreduction of CO2 to CO by enzyme-modified TiO2 nanoparticles using visible light. J. Am. Chem. Soc. 132, 2132 (2010).

    Article  CAS  Google Scholar 

  3. S. Chu, Y. Cui, and N. Liu: The path towards sustainable energy. Nat. Mater. 16, 16 (2017).

    Article  Google Scholar 

  4. J.H. Montoya, L.C. Seitz, P. Chakthranont, A. Vojvodic, T.F. Jaramillo, and J.K. Nørskov: Materials for solar fuels and chemicals. Nat. Mater. 16, 70 (2017).

    Article  Google Scholar 

  5. J. Zhao, C. Chen, and W. Ma: Photocatalytic degradation of organic pollutants under visible light irradiation. Top. Catal. 35, 269 (2005).

    Article  CAS  Google Scholar 

  6. J. Park: Visible and near infrared light active photocatalysis based on conjugated polymers. J. Ind. Eng. Chem. 51, 27 (2017).

    Article  CAS  Google Scholar 

  7. A. Mishra and P. Bäuerle: Small molecule organic semiconductors on the move: promises for future solar energy technology. Angew. Chem. Int. Ed. 51, 2020 (2012).

    Article  CAS  Google Scholar 

  8. V.S. Vyas, F. Haase, L. Stegbauer, G. Savasci, F. Podjaski, C. Ochsenfeld, and B.V. Lotsch: A tunable azine covalent organic framework platform for visible light-induced hydrogen generation. Nat. Commun. 6, 8508 (2015).

    Article  CAS  Google Scholar 

  9. L. Li, Z. Cai, Q. Wu, W.-Y. Lo, N. Zhang, L.X. Chen, and L. Yu: Rational design of porous conjugated polymers and roles of residual palladium for photocatalytic hydrogen production. J. Am. Chem. Soc. 138, 7681 (2016).

    Article  CAS  Google Scholar 

  10. B.C. Ma, S. Ghasimi, K. Landfester, F. Vilela, and K.A. Zhang: Conjugated microporous polymer nanoparticles with enhanced dispersibility and water compatibility for photocatalytic applications. J. Mater. Chem. A 3, 16064 (2015).

    Article  CAS  Google Scholar 

  11. S. Ghosh, N.A. Kouamé, L. Ramos, S. Remita, A. Dazzi, A. Deniset-Besseau, P. Beaunier, F. Goubard, P.-H. Aubert, and H. Remita: Conducting polymer nanostructures for photocatalysis under visible light. Nat. Mater. 14, 505 (2015).

    Article  CAS  Google Scholar 

  12. S. Xu, L. Gu, K. Wu, H. Yang, Y. Song, L. Jiang, and Y. Dan: The influence of the oxidation degree of poly(3-hexylthiophene) on the photocatalytic activity of poly(3-hexylthiophene)/TiO2 composites. Sol. Energy Mater. Sol. Cells 96, 286 (2012).

    Article  CAS  Google Scholar 

  13. L. Wang, W. Huang, R. Li, D. Gehrig, P.W. Blom, K. Landfester, and K.A. Zhang: Structural design principle of small-molecule organic semiconductors for metal-free, visible-light-promoted photocatalysis. Angew. Chem. Int. Ed. 55, 9783 (2016).

    Article  CAS  Google Scholar 

  14. Z. Zhang, J. Wang, D. Liu, W. Luo, M. Zhang, W. Jiang, and Y. Zhu: Highly efficient organic photocatalyst with full visible light spectrum through p–p stacking of TCNQ–PTCDI. ACS Appl. Mater. Interfaces 8, 30225 (2016).

    Article  CAS  Google Scholar 

  15. M.T. Dang, L. Hirsch, and G. Wantz: P3HT:PCBM, best seller in polymer photovoltaic research. Adv. Mater. 23, 3597 (2011).

    Article  CAS  Google Scholar 

  16. H. Yoshida: New experimental method to precisely examine the LUMO levels of organic semiconductors and application to the fullerene derivatives. MRS Online Proc. Libr. Arch. 1493, 295 (2013).

    Article  Google Scholar 

  17. Y. Ie, M. Karakawa, S. Jinnai, H. Yoshida, A. Saeki, S. Seki, S. Yamamoto, H. Ohkita, and Y. Aso: Electron-donor function of methanofullerenes in donor–acceptor bulk heterojunction systems. Chem. Commun. 50, 4123 (2014).

    Article  CAS  Google Scholar 

  18. Y. Zhong, S. Izawa, K. Hashimoto, K. Tajima, T. Koganezawa, and H. Yoshida: Crystallization-induced energy level change of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) film: impact of electronic polarization energy. J. Phys. Chem. C 119, 23 (2014).

    Article  Google Scholar 

  19. W. Tu, Y. Zhou, and Z. Zou: Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: state-of-the-art accomplishment, challenges, and prospects. Adv. Mater. 26, 4607 (2014).

    Article  CAS  Google Scholar 

  20. E. von Hauff, V. Dyakonov, and J. Parisi: Study of field effect mobility in PCBM films and P3HT:PCBM blends. Sol. Energy Mater. Sol. Cells 87, 149 (2005).

    Article  Google Scholar 

  21. H. Kasai, H.S. Nalwa, H. Oikawa, S. Okada, H. Matsuda, N. Minami, A. Kakuta, K. Ono, A. Mukoh, and H. Nakanishi: A novel preparation method of organic microcrystals. Jpn. J. Appl. Phys. 31, L1132 (1992).

    Article  CAS  Google Scholar 

  22. A. Masuhara, Z. Tan, H. Kasai, H. Nakanishi, and H. Oikawa: Fullerene fine crystals with unique shapes and controlled size. Jpn. J. Appl. Phys. 48, 050206 (2009).

    Article  Google Scholar 

  23. T. Sommer, T. Kruse, and P. Roth: Thermal stability of fullerenes: a shock tube study on the pyrolysis of C60 and C70. J. Phys. B 29, 4955 (1996).

    Article  CAS  Google Scholar 

  24. S. Pont, F. Foglia, A.M. Higgins, J.R. Durrant, and J.T. Cabral: Stability of polymer:PCBM thin films under competitive illumination and thermal stress. Adv. Funct. Mater. 28, 1802520 (2018).

    Article  Google Scholar 

  25. I.K. Konstantinou, and T.A. Albanis: TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl. Catal., B 49, 1 (2004).

    Article  CAS  Google Scholar 

  26. Y. Chen, S. Yang, K. Wang, and L. Lou: Role of primary active species and TiO2 surface characteristic in UV-illuminated photodegradation of Acid Orange 7. J. Photochem. Photobiol., A 172, 47 (2005).

    Article  CAS  Google Scholar 

  27. Y. Zhang, N. Zhang, Z.-R. Tang, and Y.-J. Xu: Identification of Bi2WO6 as a highly selective visible-light photocatalyst toward oxidation of glycerol to dihydroxyacetone in water. Chem. Sci. 4, 1820 (2013).

    Article  CAS  Google Scholar 

  28. S. Ghosh, N.A. Kouame, S. Remita, L. Ramos, F. Goubard, P.-H. Aubert, A. Dazzi, A. Deniset-Besseau, and H. Remita: Visible-light active conducting polymer nanostructures with superior photocatalytic activity. Sci. Rep. 5, srep18002 (2015).

  29. Y. Li, S. Sun, M. Ma, Y. Ouyang, and W. Yan: Kinetic study and model of the photocatalytic degradation of rhodamine B (RhB) by a TiO2-coated activated carbon catalyst: effects of initial RhB content, light intensity and TiO2 content in the catalyst. Chem. Eng. J. 142, 147 (2008).

    Article  CAS  Google Scholar 

  30. T.M. Clarke, A.M. Ballantyne, J. Nelson, D.D. Bradley, and J.R. Durrant: Free energy control of charge photogeneration in polythiophene/fullerene solar cells: the influence of thermal annealing on P3HT/PCBM blends. Adv. Funct. Mater 18, 4029 (2008).

    Article  CAS  Google Scholar 

  31. Y. Kim, J. Nelson, T. Zhang, S. Cook, J.R. Durrant, H. Kim, J. Park, M. Shin, S. Nam, and M. Heeney: Distorted asymmetric cubic nanostructure of soluble fullerene crystals in efficient polymer: fullerene solar cells. ACS Nano 3, 2557 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by JSPS KAKENHI Grant Number JS18K05227, and Dynamic Alliance for Open Innovation Bridging Human, Environment and Materials from Ministry of Education, Culture, Sport, Science and Technology of Japan (MEXT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidetoshi Oikawa.

Appendices

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2018.229.

Conflicts of interest

There are no conflicts to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pornrungroj, C., Onodera, T. & Oikawa, H. PCBM nanoparticles as visible-light-driven photocatalysts for photocatalytic decomposition of organic dyes. MRS Communications 9, 321–326 (2019). https://doi.org/10.1557/mrc.2018.229

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.229

Navigation