Skip to main content
Log in

Li+ ion conductor based on NaBr doped with LiBH4

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

In this work, the guest Li+ conduction properties in NaBr–LiBH4 system were investigated. It was suggested that the guest Li+ ions occupy the Na+ sites and BH4 ions substitute the Br ions in NaBr. The dominant Li+ conduction in NaBr–LiBH4 system was demonstrated by the combination of electrochemical measurements and time-of-flight secondary ion mass spectrometry. The guest Li+ ion conductivity of 15NaBr·LiBH4 was measured to be 1 × 10−7 S/cm at 313 K. The present results indicate that the guest Li+ conductors are not restricted to the previous reported iodides (NaI, KI), but other Li-free compounds have the possibility to become the candidates for the guest Li+ ion conductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  1. N. Machida, K. Kobayashi, Y. Nishikawa, and T. Shigematsu: Electrochemical properties of sulfur as cathode materials in a solid-state lithium battery with inorganic solid electrolytes. Solid State Ionics 175, 247 (2004).

    Article  CAS  Google Scholar 

  2. N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, and A. Mitsui: A lithium superionic conductor. Nat. Mater. 10, 682 (2011).

    Article  CAS  Google Scholar 

  3. Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama, A. Mitsui, M. Yonemura, H. Iba, and R. Kanno: High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1, 16030 (2016).

    Article  CAS  Google Scholar 

  4. N. Anantharamulu, K. Koteswara Rao, G. Rambabu, B. Vijaya Kumar, V. Radha, and M. Vithal: A wide-ranging review on Nasicon type materials. J. Mater. Sci. 46, 2821 (2011).

    Article  CAS  Google Scholar 

  5. S. Stramare, V. Thangadurai, and W. Weppner: Lithium lanthanum titanates: a review. Chem. Mater. 15, 3974 (2003).

    Article  CAS  Google Scholar 

  6. Y. Kobayashi, T. Takeuchi, M. Tabuchi, K. Ado, and H. Kageyama: Densification of LiTi2(PO4)3-based solid electrolytes by spark-plasma-sintering. J. Power Sources 81–82, 853 (1999).

    Article  Google Scholar 

  7. V. Thangadurai, S. Narayanan, and D. Pinzaru: Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem. Soc. Rev. 43, 4714 (2014).

    Article  CAS  Google Scholar 

  8. H. Muramatsu, A. Hayashi, T. Ohtomo, S. Hama, and M. Tatsumisago: Structural change of Li 2S–P2S5 sulfide solid electrolytes in the atmosphere. Solid State Ionics 182, 116 (2011).

    Article  CAS  Google Scholar 

  9. R.C. Hanson: Diffusion of lithium in potassium chloride. Phys. Stat. Sol. 1, 109 (1970).

    Article  CAS  Google Scholar 

  10. M. Lazzari and B. Scrosati: Co-ionic conductivity in some solid electrolytes. Electrochim. Acta 23, 75 (1978).

    Article  CAS  Google Scholar 

  11. R. Miyazaki, H. Maekawa, and H. Takamura: Synthesis of rock-salt type lithium borohydride and its peculiar Li + ion conduction properties. APL Mater. 2, 056109 (2014).

    Article  Google Scholar 

  12. R. Miyazaki, D. Kurihara, and T. Hihara: Li + ionic conduction properties on NaI doped with a small amount of LiBH4. J. Solid State Electrochem. 20, 2759 (2016).

    Article  CAS  Google Scholar 

  13. R. Miyazaki, D. Kurihara, D. Hayashi, S. Furughori, M. Shomura, and T. Hihara: Post-anneal effect on the structural and Li + conduction properties in NaI–LiBH4 system. MRS Adv. 2, 389 (2017).

    Article  CAS  Google Scholar 

  14. R. Miyazaki, I. Sakaguchi, K. Weitzel, and T. Hihara: Demonstration of the conductive species in “Li-free” solid solvent doped with LiBH4 and its Li + dominating conduction mechanism. Electrochim. Acta. 283, 1188 (2018).

    Article  CAS  Google Scholar 

  15. R. Miyazaki and T. Hihara: A highly plastic Li + ion conductor based on the KI-KBH4 solid solvent system. J. Solid State Electrochem. 22, 2855 (2018).

    Article  CAS  Google Scholar 

  16. D. Liu, J. Yang, J. Ni, and A. Drews: Studies of the effects of TiCl3 in LiBH4/CaH2/TiCl3 reversible hydrogen storage system. J. Alloys Compd. 514, 103 (2012).

    Article  CAS  Google Scholar 

  17. S. Kumar, Y. Kojima, and G. Kumar: Synergic effect of ZrCl4 on thermal dehydrogenation kinetics of KBH4. J. Alloys Compd. 718, 134 (2017).

    Article  CAS  Google Scholar 

  18. R. Miyazaki, Y. Noda, H. Miyazaki, K. Soda, and T. Hihara: Li + ion doping into KI-KBH4 solid solvent systems: the role of the BH4- anion. J. Alloys Compd. 735, 1291 (2018).

    Article  CAS  Google Scholar 

  19. R.D. Shannon: Revised effective ionic radii and systematic studies of interatomic distances in halides and chaleogenides. Acta Crystallogr. A32, 751 (1976).

    Article  CAS  Google Scholar 

  20. R. Miyazaki, N. Kumatani, K. Kanno, M. Ando, M. Matsuo, H. Takamura, S. Orimo, and H. Maekawa: ENHANCED LITHIUM IONIC CONDUCTIVITY IN LiBH4 BY ANION SUBSTITUTION. Proc. 12th Asian Conf. Solid State Ionics. 306 (2010).

    Google Scholar 

  21. JANAF-FourthEd. (1998). https://janaf.nist.gov/ (accessed November 10, 2018).

Download references

ACKNOWLEDGMENTS

This work was supported by JSPS KAKENHI Grant-in-Aid for Young Scientists, 18K14319 and The Foundation for The Promotion of Ion Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reona Miyazaki.

Supplementary materials

Supplementary materials

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2018.225.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyazaki, R., Shomura, M., Miyagawa, R. et al. Li+ ion conductor based on NaBr doped with LiBH4. MRS Communications 9, 304–309 (2019). https://doi.org/10.1557/mrc.2018.225

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.225

Navigation