Skip to main content
Log in

Versatile applications of three-dimensional objects fabricated by two-photon-initiated polymerization

  • Prospective Article
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

In this topical review of two-photon stereolithography (TPS), we discuss novel materials and demonstrate applications of this technology. Two-photon-initiated chemical processes are used to fabricate arbitrary three-dimensional structures in TPS. In the first part of this article, the development of novel photoactive materials to fabricate pure inorganic or organic-inorganic hybrid microstructures is discussed. The second part discusses the fabrication of functional microstructures for highly specific applications to demonstrate the importance of TPS in different fields of science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. G.M. Gratson, F. Garcfa-Santamaria, V. Lousse, M. Xu, S. Fan, J.A. Lewis, and P.V. Braun: Direct-write assembly of three-dimensional photonic crystals: conversion of polymer scaffolds to silicon hollow-woodpile structures. Adv. Mater. 18, 461 (2006).

    Article  CAS  Google Scholar 

  2. M. Park, C. Harrison, P.M. Chaikin, R.A. Register, and D.H. Adamson: Block copolymer lithography: periodic arrays of 1011 holes in 1 square centimeter. Science 276, 1401 (1997).

    Article  CAS  Google Scholar 

  3. J. Fleming, S. Lin, I. El-Kady, R. Biswas, and K. Ho: All-metallic three-dimensional photonic crystals with a large infrared bandgap. Nature 417, 52 (2002).

    Article  CAS  Google Scholar 

  4. D. Tolfree: Microfabrication using synchrotron radiation. Rep. Prog. Phys. 61, 313 (1998).

    Article  CAS  Google Scholar 

  5. I. Divliansky, T.S. Mayer, K.S. Holliday, and V.H. Crespi: Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography. Appl. Phys. Lett. 82, 1667 (2003).

    Article  CAS  Google Scholar 

  6. S. Reyntjens and R. Puers: A review of focused ion beam applications in microsystem technology. J. Micromech. Microeng. 11, 287 (2001).

    Article  CAS  Google Scholar 

  7. A. Bertsch, H. Lorenz, and P. Renaud: Combining microstereolithography and thick resist UV lithography for 3D microfabrication, in Micro Electro Mechanical Systems, Proceedings MEMS 98 (1998).

    Google Scholar 

  8. S.J. Lee, H.W. Kang, J.K. Park, J.W. Rhie, S.K. Hahn, and D.W. Cho: Application of microstereolithography in the development of three-dimensional cartilage regeneration scaffolds. Biomed. Microdevices 10, 233 (2008).

    Article  CAS  Google Scholar 

  9. P. Prabhakaran: An Introduction to Direct Laser Writing (DLW), Direct Laser Writing (2018). Available at: http://13dw.com/ (accessed 30 May 2018).

    Google Scholar 

  10. K.-S. Lee, R.H. Kim, D.Y. Yang, and S.H. Park: Advances in 3D nano/microfabrication using two-photon initiated polymerization. Prog. Polym. Sci. 33, 631 (2008).

    Article  CAS  Google Scholar 

  11. N. Tsutsumi, K. Nagata, and W. Sakai: Two-photon laser fabrication of three-dimensional silver microstructures with submicron scale linewidth. Appl. Phys. A: Mater. Sci. Process. 103, 421 (2011).

    Article  CAS  Google Scholar 

  12. Y.L. Zhang, Q.D. Chen, H. Xia, and H.B. Sun: Designable 3D nanofabrica-tion by femtosecond laser direct writing. Nano. Today. 5, 435 (2010).

    Article  CAS  Google Scholar 

  13. D.Y. Yang, T.W. Lim, Y. Son, H.J. Kong, K.-S. Lee, D.P. Kim, and S.H. Park: Additive process using femto-second laser for manufacturing three-dimensional nano/micro-structures. Int. J. Prec. Eng. Manuf. 8, 63 (2007).

    Google Scholar 

  14. R.A. Farrer, C.N. LaFratta, L. Li, J. Praino, M.J. Naughton, B.E. Saleh, M.C. Teich, and J.T. Fourkas: Selective functionalization of 3-D polymer microstructures. J. Am. Chem. Soc. 128, 1796 (2006).

    Article  CAS  Google Scholar 

  15. N.D. Lai, W.P. Liang, J.H. Lin, C.C. Hsu, and C.H. Lin: Fabrication of two-and three-dimensional periodic structures by multi-exposure of two-beam interference technique. Opt. Express 13, 9605 (2005).

    Article  Google Scholar 

  16. R. Guo, Z. Li, Z. Jiang, D. Yuan, W. Huang, and A. Xia: Log-pile photonic crystal fabricated by two-photon photopolymerization. J. Opt. A: Pure Appl. Opt. 7, 396 (2005).

    Article  CAS  Google Scholar 

  17. C.N. LaFratta, T. Baldacchini, R.A. Farrer, J.T. Fourkas, M.C. Teich, B.E. Saleh, and M.J. Naughton: Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs. J. Phys. Chem. B 108, 11256 (2004).

    Article  CAS  Google Scholar 

  18. H. Kodama: Automatic method for fabricating a three dimensional plastic model with photo-hardening polymer. Rev. Sci. Instrum. 52, 1770 (1981).

    Article  Google Scholar 

  19. K. Ikuta and K. Hirowatari: Real three-dimensional micro-fabrication using stereo lithography and metal molding. Micro Electro Mechanical Systems, 1993, MEMS’93, Proceedings’ An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems’. IEEE, 42 (1993).

    Google Scholar 

  20. S. Maruo, O. Nakamura, and S. Kawata: Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt. Lett. 22, 132 (1997).

    Article  CAS  Google Scholar 

  21. S. Maruo and K. Ikuta: Submicron stereolithography for the production of freely movable mechanisms by using single-photon polymerization. Sens. Actuators, A 100, 70 (2002).

    Article  CAS  Google Scholar 

  22. S.H. Park, S.H. Lee, D.Y. Yang, H.J. Kong, and K.-S. Lee: Subregional slicing method to increase three-dimensional nanofabrication efficiency in two-photon polymerization. Appl. Phys. Lett. 87, 154108 (2005).

    Article  CAS  Google Scholar 

  23. A. Vyatskikh, S. Delalande, A. Kudo, X. Zhang, C.M. Portela, and J.R. Greer: Additive manufacturing of 3D nano-architected metals. Nat. Commun. 9, 593 (2018).

    Article  CAS  Google Scholar 

  24. T. Frenzel, M. Kadic, and M. Wegener: Three-dimensional mechanical metamaterials with a twist. Science 358, 1072 (2017).

    Article  CAS  Google Scholar 

  25. T. Bückmann, M. Thiel, M. Kadic, R. Schittny, and M. Wegener: An elastomechanical unfeelability cloak made of pentamode metamaterials. Nat. Commun. 5, 4130 (2014).

    Article  CAS  Google Scholar 

  26. L.R. Meza, A.J. Zelhofer, N. Clarke, A.J. Mateos, D.M. Kochmann, and J.R. Greer: Resilient 3D hierarchical architected metamaterials. Proc. Natl. Acad. Sci. 112, 11502 (2015).

    Article  CAS  Google Scholar 

  27. M. Malinauskas, H. Gilbergs, A. Zukauskas, V. Purlys, D. Paipulas, and R. Gadonas: A femtosecond laser-induced two-photon photopolymerization technique for structuring microlenses. J. Opt. 12, 035204 (2010).

    Article  CAS  Google Scholar 

  28. R. Guo, S. Xiao, X. Zhai, J. Li, A. Xia, and W. Huang: Micro lens fabrication by means of femtosecond two photon photopolymerization. Opt. Express 14, 810 (2006).

    Article  CAS  Google Scholar 

  29. J. Serbin, A. Egbert, A. Ostendorf, B.N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Frhlich, and M. Popall: Femtosecond laser-induced two-photon polymerization of inorganic organic hybrid materials for applications in photonics. Opt. Lett. 28, 301 (2003).

    Article  CAS  Google Scholar 

  30. T. Weiß, R. Schade, T. Laube, A. Berg, G. Hildebrand, R. Wyrwa, M. Schnabelrauch, and K. Liefeith: Two photon polymerization of biocompatible photopolymers for microstructured 3D biointerfaces. Adv. Eng. Mater. 13, B264 (2011).

    Article  CAS  Google Scholar 

  31. T. Baldacchini, V. Nunez, C.N. LaFratta, J.S. Grech, V.I. Vullev, and R. Zadoyan: Microfabrication of three-dimensional filters for liposome extrusion. In Laser 3D Manufacturing II, Proc. SPIE 9353, 93530W (2015).

    Google Scholar 

  32. C.W. Ha, P. Prabhakaran, Y. Son, K.-S. Lee, and D.Y. Yang: Effective direct writing of hierarchical 3D polymer micromeshes by continuous out-of-plane longitudinal scanning. Macromol. Res. 25, 1129 (2017).

    Article  CAS  Google Scholar 

  33. H. Yang, P. Deschatelets, S.T. Brittain, and G.M. Whitesides: Fabrication of high performance ceramic microstructures from a polymeric precursor using soft lithography. Adv. Mater. 13, 54 (2001).

    Article  Google Scholar 

  34. L.A. Liew, Y. Liu, R. Luo, T. Cross, L. An, V.M. Bright, M.L. Dunn, J.W. Daily, and R. Raj: Fabrication of SiCN MEMS by photopolymerization of pre-ceramic polymer. Sens. Actuators, A 95, 120 (2002).

    Article  CAS  Google Scholar 

  35. C. Provin, S. Monneret, H. Le Gall, and S. Corbel: Three dimensional ceramic microcomponents made using microstereolithography. Adv. Mater. 15, 994 (2003).

    Article  CAS  Google Scholar 

  36. T.W. Lim, Y. Son, D.Y. Yang, T.A. Pham, D.P. Kim, B.I. Yang, K.-S. Lee, and S.H. Park: Net shape manufacturing of three-dimensional SiCN ceramic microstructures using an isotropic shrinkage method by introducing shrinkage guiders. Int. J. Appl. Ceram. Technol. 5, 258 (2008).

    Article  CAS  Google Scholar 

  37. T.A. Pham, D.P. Kim, T.W. Lim, S.H. Park, D.Y. Yang, and K.-S. Lee: Three-dimensional SiCN ceramic microstructures via nano-stereolithography of inorganic polymer photoresists. Adv. Funct. Mater. 16, 1235 (2006).

    Article  CAS  Google Scholar 

  38. J.S. Steckel, P. Snee, S.C. Sullivan, J.P. Zimmer, J.E. Halpert, P. Anikeeva, L.A. Kim, V. Bulovic, and M.G. Bawendi: Color-saturated green emitting QD LEDs. Angew. Chem. Int. Ed. 45, 5796 (2006).

    Article  CAS  Google Scholar 

  39. N. Cho, K. Roy Choudhury, R.B. Thapa, Y. Sahoo, T. Ohulchanskyy, A.N. Cartwright, K.-S. Lee, and P.N. Prasad: Efficient photodetection at IR wavelengths by incorporation of PbSe-carbon-nanotube conjugates in a polymeric nanocomposite. Adv. Mater. 19, 232 (2007).

    Article  CAS  Google Scholar 

  40. B. Dubertret, P. Skourides, D.J. Norris, V. Noireaux, A.H. Brivanlou, and A. Libchaber: In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298, 1759 (2002).

    Article  CAS  Google Scholar 

  41. J.J. Park, P. Prabhakaran, K.K. Jang, Y. Lee, J. Lee, K. Lee, J. Hur, J.M. Kim, N. Cho, Y. Son, D.Y. Yang, and K.-S. Lee: Photopatternable quantum dots forming quasi-ordered arrays. Nano Lett. 10, 2310 (2010).

    Article  CAS  Google Scholar 

  42. D.R. Smith, J.B. Pendry, and M.C.K. Wiltshire: Metamaterials and negative refractive index. Science 305, 788 (2004).

    Article  CAS  Google Scholar 

  43. K.K. Jang, P. Prabhakaran, D. Chandran, J.J. Park, and K.-S. Lee: Solution processable and photopatternable blue, green and red quantum dots suitable for full color displays devices. Opt. Mater. Express., 1 519 (2012).

    Article  CAS  Google Scholar 

  44. R. Krini, C.W. Ha, P. Prabhakaran, H.E. Mard, D.Y. Yang, R. Zentel, and K.-S. Lee: Photosensitive functionalized surface modified quantum dots for polymeric structures via two-photon-initiated polymerization technique. Macromol. Rapid Commun. 36, 1108 (2015).

    Article  CAS  Google Scholar 

  45. S.K. Park, X. Teng, J. Jung, P. Prabhakaran, C.W. Ha, and K.-S. Lee: Photopatternable cadmium-free quantum dots with ene-functionalization. Opt. Mater. Express, 1 2440 (2017).

    Article  Google Scholar 

  46. S.H. Ko, H. Pan, C.P. Grigoropoulos, C.K. Luscombe, J.M. Fréchet, and D. Poulikakos: Air stable high resolution organic transistors by selective laser sintering of ink-jet printed metal nanoparticles. Appl. Phys. Lett. 90, 141103 (2007).

    Article  CAS  Google Scholar 

  47. J. Chung, S. Ko, N.R. Bieri, C.P. Grigoropoulos, and D. Poulikakos: Conductor microstructures by laser curing of printed gold nanoparticle ink. Appl. Phys. Lett. 84, 801 (2004).

    Article  CAS  Google Scholar 

  48. J. Chung, N. Bieri, S. Ko, C. Grigoropoulos, and D. Poulikakos: In-tandem deposition and sintering of printed gold nanoparticle inks induced by continuous Gaussian laser irradiation. Appl. Phys. A 79, 1259 (2004).

    Article  CAS  Google Scholar 

  49. H. Wang, S. Liu, Y.L. Zhang, J.N. Wang, L. Wang, H. Xia, Q.D. Chen, H. Ding, and H.B. Sun: Controllable assembly of silver nanoparticles induced by femtosecond laser direct writing. Sci. Technol. Adv. Mater. 16, 024805 (2015).

    Article  CAS  Google Scholar 

  50. H. Wang, Y.L. Zhang, H. Xia, Q.D. Chen, K.S. Lee, and H.B. Sun: Photodynamic assembly of nanoparticles towards designable patterning. Nanoscale Horiz. 1, 201, (2016).

    Article  CAS  Google Scholar 

  51. F. Stellacci, C.A. Bauer, T. Meyer-Fried richsen, W. Wenseleers, V. Alain, S.M. Kuebler, S.J.K. Pond, Y. Zhang, S.R. Marder, and J.W. Perry: Laser and electron-beam induced growth of nanoparticles for 2D and 3D metal patterning. Adv. Mater. 14, 194 (2002).

    Article  CAS  Google Scholar 

  52. G. Vitrant, J. Bosson, N. Tosa, T. Rosenzveig, O. Stephan, S. Astilean, and P.L. Baldeck: Observation of optical dispersion effects in metallic nano-structures fabricated by laser illumination of an organic polymer matrix doped with metallic salts, SPIE2007 p. 647000 (2007).

    Google Scholar 

  53. N. Tosa, J. Bosson, M. Pierre, C. Rambaud, M. Bouriau, G. Vitrant, O. Stéphan, S. Astilean, and P.L. Baldeck: Optical properties of metallic nanostructures fabricated by two-photon induced photoreduction. In Nanophotonics, Proc. SPIE. 6195, 619501 (2015).

    Article  CAS  Google Scholar 

  54. Y.Y. Cao, N. Takeyasu, T. Tanaka, X.M. Duan, and S. Kawata: 3D metallic nanostructure fabrication by surfactant assisted multiphoton induced reduction. Small 5, 1144 (2009).

    CAS  Google Scholar 

  55. A. Ishikawa, T. Tanaka, and S. Kawata: Improvement in the reduction of silver ions in aqueous solution using two-photon sensitive dye. Appl. Phys. Lett. 89, 113102 (2006).

    Article  CAS  Google Scholar 

  56. T. Tanaka, A. Ishikawa, and S. Kawata: Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure. Appl. Phys. Lett. 88, 081107 (2006).

    Article  CAS  Google Scholar 

  57. P. Prabhakaran, K.K. Jang, Y. Son, D.Y. Yang, and K.-S. Lee: Fabrication of microstructures containing high refractive index materials by two-photon lithography. Mol. Cryst. Liq. Cryst. 578, 4 (2013).

    Article  CAS  Google Scholar 

  58. W. Wenseleers, F. Stellacci, T. Meyer-Friedrichsen, T. Mangel, C.A. Bauer, S.J. Pond, S.R. Marder, and J.W. Perry: Five orders-of-magnitude enhancement of two-photon absorption for dyes on silver nanoparticle fractal clusters. J. Phys. Chem. B 106, 6853 (2002).

    Article  CAS  Google Scholar 

  59. H. Yuan, C.G. Khoury, H. Hwang, C.M. Wilson, G.A. Grant, and T. Vo-Dinh: Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging. Nanotechnology 23, 075102 (2012).

    Article  CAS  Google Scholar 

  60. Y. Son, J. Yeo, H. Moon, T.W. Lim, S. Hong, K.H. Nam, S. Yoo, C.P. Grigoropoulos, D.Y. Yang, and S.H. Ko: Nanoscale electronics: digital fabrication by direct femtosecond laser processing of metal nanoparticles. Adv. Mater. 23, 3176 (2011).

    Article  CAS  Google Scholar 

  61. Y. Son, J. Yeo, C.W. Ha, J. Lee, S. Hong, K.H. Nam, D.Y. Yang, and S.H. Ko: Application of the specific thermal properties of Ag nanoparticles to high-resolution metal patterning. Thermochim. Acta 542, 52 (2012).

    Article  CAS  Google Scholar 

  62. S. Jeon, V. Malyarchuk, J.O. White, and J.A. Rogers: Optically fabricated three dimensional nanofluidic mixers for microfluidic devices. Nano Lett. 5, 1351 (2005).

    Article  CAS  Google Scholar 

  63. S.G. Park, S.K. Lee, J.H. Moon, and S.M. Yang: Holographic fabrication of three-dimensional nanostructures for microfluidic passive mixing. Lab Chip 9, 3144 (2009).

    Article  CAS  Google Scholar 

  64. A.D. Stroock, S.K.W. Dertinger, A. Ajdari, I. Mezic, H.A. Stone, and G.M. Whitesides: Chaotic mixer for microchannels. Science 295, 647 (2002).

    Article  CAS  Google Scholar 

  65. F. Schönfeld, V. Hessel, and C. Hofmann: An optimised split-and-recombine micro-mixer with uniform ’chaotic’ mixing. Lab Chip 4, 65 (2004).

    Article  Google Scholar 

  66. D.S. Kim, S.H. Lee, T.H. Kwon, and C.H. Ahn: A serpentine laminating micromixer combining splitting/recombination and advection. Lab Chip 5, 739 (2005).

    Article  CAS  Google Scholar 

  67. B.B. Xu, Y.L. Zhang, H. Xia, W.F. Dong, H. Ding, and H.B. Sun: Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing. Lab Chip 13, 1677 (2013).

    Article  CAS  Google Scholar 

  68. T.W. Lim, Y. Son, Y.J. Jeong, D.Y. Yang, H.J. Kong, K.-S. Lee, and D.P. Kim: Three-dimensionally crossing manifold micro-mixer for fast mixing in a short channel length. Lab Chip 11, 100 (2011).

    Article  CAS  Google Scholar 

  69. M. Wautelet: Scaling laws in the macro-, micro- and nanoworlds. Eur. J. Phys. 22, 601 (2001).

    Article  Google Scholar 

  70. O. Cugat, J. Delamare, and G. Reyne: Magnetic micro-actuators and systems (MAGMAS). IEEE Trans. Magn. 39, 3607 (2003).

    Article  Google Scholar 

  71. W.S. Trimmer: Microrobots and micromechanical systems. Sens. Actuators 19, 267 (1989).

    Article  Google Scholar 

  72. Z. Hongzhe and B. Shusheng: Accuracy characteristics of the generalized cross-spring pivot. Mech. Mach. Theory 45, 1434 (2010).

    Article  Google Scholar 

  73. H. Zhao and S. Bi: Stiffness and stress characteristics of the generalized cross-spring pivot. Mech. Mach. Theory 45, 378 (2010).

    Article  Google Scholar 

  74. C.W. Ha and D.Y. Yang: Rotational elastic micro joint based on helix-augmented cross-spring design for large angular movement. Opt. Express 22, 20789 (2014).

    Article  Google Scholar 

  75. C.W. Ha and D.Y. Yang: Elastic translational joint for large translation of motion using spiral structures. J. Intell. Mechatron. Rob., 3, 48 (2013).

    Article  Google Scholar 

  76. B.J. Jung, H.J. Kong, Y.H. Cho, K.S. Lee, C.H. Park, D.Y. Yang, and K.-S. Lee: Fabrication of sharp-needled conical polymer tip on the cross-section of optical fiber via two-photon polymerization for tuning-fork-based atomic force microscopy. Opt. Commun. 286, 197 (2013).

    Article  CAS  Google Scholar 

  77. C. Liberale, G. Cojoc, P. Candeloro, G. Das, F. Gentile, F. De Angelis, and E. Di Fabrizio: Micro-optics fabrication on top of optical fibers using two-photon lithography. IEEE Photonics Technol. Lett. 22, 474 (2010).

    Article  Google Scholar 

  78. T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener: Tailored 3D mechanical metamaterials made by dip in direct laser writing optical lithography. Adv. Mater. 24, 2710 (2012).

    Article  CAS  Google Scholar 

  79. C.T. Kuo, C.L. Chiang, R.Y.J. Huang, H. Lee, and A.M. Wo: Configurable 2D and 3D spheroid tissue cultures on bioengineered surfaces with acquisition of epithelial-mesenchymal transition characteristics. NPG Asia Mater. 4, e27 (2012).

    Article  CAS  Google Scholar 

  80. J. Debnath and J.S. Brugge: Modelling glandular epithelial cancers in three-dimensional cultures. Nat. Rev. Cancer 5, 675 (2005).

    Article  CAS  Google Scholar 

  81. J.H. An, D.K. Choi, K.J. Lee, and J.W. Choi: Surface-enhanced Raman spectroscopy detection of dopamine by DNA targeting amplification assay in Parkisons’s model. Biosens. Bioelectron. 67, 739 (2015).

    Article  CAS  Google Scholar 

  82. M.M. Gottesman: Mechanisms of cancer drug resistance. Annu. Rev. Med. 53, 615 (2002).

    Article  CAS  Google Scholar 

  83. K.J. Lee, J.H. An, J.S. Shin, C.W. Ha, Y. Son, J. Seok, and K.-S. Lee: Evaluation of anticancer drug in a polymer 3D cell chip. Opt. Mater. Express 7, 2752 (2017).

    Article  CAS  Google Scholar 

  84. K.J. Lee, J. Hee An, C.W. Ha, Y. Son, D.Y. Yang, J. Jung, K.-S. Lee, and J.W. Choi: 3D Hierarchical, pyramid-based cancer cell chip for the detection of anticancer drug effects. J. Biomed. Nanotechnol. 12, 2125 (2016).

    Article  CAS  Google Scholar 

  85. L.A. Shaw, S. Chizari, M. Shusteff, H. Naghsh-Nilchi, D. Di Carlo, and J.B. Hopkins: Scanning two-photon continuous flow lithography for synthesis of high-resolution 3D microparticles. Opt. Express 26, 13543 (2018).

    Article  CAS  Google Scholar 

  86. S.C. Laza, M. Polo, A.A. Neves, R. Cingolani, A. Camposeo, and D. Pisignano: Two-photon continuous flow lithography. Adv. Mater. 24, 1304 (2012).

    Article  CAS  Google Scholar 

  87. M. Malinauskas, A. Zukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis: Ultrafast laser processing of materials: from science to industry. Light: Sci. Appl. 5, e16133 (2016).

    Article  CAS  Google Scholar 

  88. F.C. Wang, K.A. Wang, T.T. Chung, and J.Y. Yen: Fabrication of large-scale micro-structures by two-photon polymerization with a long-stroke precision stage. Adv. Mech. Eng. 9, 1 (2017).

    Google Scholar 

  89. L. Jonusauskas, S. Juodkazis, and M. Malinauskas: Optical 3D printing: bridging the gaps in the mesoscale. J. Opt. 20, 053001 (2018).

    Article  CAS  Google Scholar 

  90. L. Jonusauskas, D. Gailevicius, T. Baravykas, S. Juodkazis, and M. Malinauskas: Mesoscale ultrafast laser 3D lithography: throughput in voxels-per-second. Proceedings of 3D Printed Optics and Additive Photonic Manufacturing 106750D (2018).

    Google Scholar 

  91. D. Ricci, M.M. Nava, T. Zandrini, G. Cerullo, M.T. Raimondi, and R. Osellame: Scaling-up techniques forthe nanofabrication of cell culture substrates via two-photon polymerization for industrial-scale expansion of stem cells. Materials 10, 66 (2017).

    Article  CAS  Google Scholar 

  92. W. Chu, Y. Tan, P. Wang, J. Xu, W. Li, J. Qi, and Y. Cheng: Centimeter-scale superfine three-dimensional printing with femtosecond laser two-photon polymerization. arXiv preprint arXiv.1802.01650 (2017).

    Google Scholar 

  93. B. Stender, W. Mantei, and R. Houbertz: From lab to fab—high precision 3D printing: towards high throughputs and industrial scalability. Laser Tech. J. 14, 20 (2017).

    Article  Google Scholar 

  94. J.A. Liddle and G.M. Gallatin: Lithography, metrology and nanomanufac-turing. Nanoscale 3, 2679 (2011).

    Article  CAS  Google Scholar 

  95. C.N. LaFratta and T. Baldacchini: Two-photon polymerization metrology: characterization methods of mechanisms and microstructures. Micromachines (Basel) 8, 101 (2017).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Mid-Career Researcher Program (2016R1A2B4008473) and the Basic Science Research Program (2017R1C1B5077130) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang-Sup Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woo Ha, C., Prabhakaran, P. & Lee, KS. Versatile applications of three-dimensional objects fabricated by two-photon-initiated polymerization. MRS Communications 9, 53–66 (2019). https://doi.org/10.1557/mrc.2018.218

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.218

Navigation