Skip to main content
Log in

Time and temperature dependent formation of hollow gold nanoparticles via galvanic replacement reaction of As(0) and its catalytic application

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Two different sized As(0) nanoparticles As1 (50 ± 7 nm) and As2 (70 ± 10 nm) are prepared by reducing arsenite with NaBH4 in the pH range 7–9, at controlled temperature (10 and 40 °C). Further, galvanic replacement reaction is used exploiting the reducing nature of As(0) to prepare two different sized hollow gold nanoparticles (HGNPs) AuNP1 (55 ± 7 nm) and AuNP2 (72 ± 7 nm). These HGNPs exhibit high catalytic activity towards 4-nitrophenol reduction under various conditions following first-order kinetics. AuNP1 shows ~6.6 time higher turnover frequency compared with that of AuNP2 due to its smaller size. Both catalysts are recycle able.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Figure 1.
Figure 2.
Figure 3.
Table I.
Table II.
Table III.
Table IV.

Similar content being viewed by others

Reference

  1. C.Y. Tsai, S.P. Lu, J.W. Lin, and P.T. Lee: High sensitivity plasmonic index sensor using slablike gold nanoring arrays. Appl. Phys. Lett. 98, 153108 (2011).

    Article  Google Scholar 

  2. B.P. Timko, M. Arruebo, S.A. Shankarappa, J.B. McAlvin, O.S. Okonkwo, B. Mizrahi, C.F. Stefanescu, L. Gomez, J. Zhu, A. Zhu, J. Santamaria, R. Langer, and D.S. Kohane: Near-infrared-actuated devices for remotely controlled drug delivery. Proc. Natl. Acad. Sci. 111, 1349 (2014).

    Article  CAS  Google Scholar 

  3. W. Lu, M.P. Melancon, C. Xiong, Q. Huang, A. Elliott, S. Song, R. Zhang, L.G. Flores, J.G. Gelovani, L.V. Wang, G. Ku, R.J. Stafford, and C. Li: Effects of photoacoustic imaging and photothermal ablation therapy mediated by targeted hollow gold nanospheres in an orthotopic mouse xenograft model of glioma. Cancer Res. 71, 6116 (2011).

    Article  CAS  Google Scholar 

  4. M.P. Melancon, W. Lu, Z. Yang, R. Zhang, Z. Cheng, A.M. Elliot, J. Stafford, T. Olson, J.Z. Zhang, and C. Li: In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photothermal ablation therapy. Mol. Cancer Ther. 7, 1730 (2008).

    Article  CAS  Google Scholar 

  5. W. Lu, Q. Huang, G. Ku, X. Wen, M. Zhou, D. Guzatov, P. Brecht, R. Su, A. Oraevsky, L.V. Wang, and C. Li: Photoacoustic imaging of living mouse brain vasculature using hollow gold nanospheres. Biomaterials 31, 2617 (2010).

    Article  CAS  Google Scholar 

  6. V. Sebastián, S.-K. Lee, C. Zhou, M.F. Kraus, J.G. Fujimoto, and K.F. Jensen: One-step continuous synthesis of biocompatible gold nanorods for optical coherence tomography. Chem. Commun. 48, 6654 (2012).

    Article  Google Scholar 

  7. L. Tong, C.M. Cobley, J. Chen, Y. Xia, and J.X. Cheng: Bright three-photon luminescence from gold/silver alloyed nanostructures for bioimaging with negligible photothermal toxicity. Angew. Chem. Int. Ed. 49, 3485 (2010).

    Article  CAS  Google Scholar 

  8. H.J. Fan, U. Gösele, and M. Zacharias: Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: a review. Small 3, 1660 (2007).

    Article  CAS  Google Scholar 

  9. M.A. Mahmoud, B. Garlyyev, and M.A. El-Sayed: Determining the mechanism of solution metallic nanocatalysis with solid and hollow nanoparticles: homogeneous or heterogeneous. J. Phys. Chem. C 117, 21886 (2013).

    Article  CAS  Google Scholar 

  10. D. Seo and H. Song: Asymmetric hollow nanorod formation through a partial galvanic replacement reaction. J. Am. Chem. Soc. 131, 18210 (2009).

    Article  CAS  Google Scholar 

  11. Y. Yin, C. Erdonmez, S. Aloni, and A.P. Alivisatos: Faceting of nanocrystals during chemical transformation: from solid silver spheres to hollow gold octahedra. J. Am. Chem. Soc. 128, 12671 (2006).

    Article  CAS  Google Scholar 

  12. R.J. Hickey, M. Seo, Q. Luo, and S.J. Park: Directional self-assembly of ligand-stabilized gold nanoparticles into hollow vesicles through dynamic ligand rearrangement. Langmuir 31, 4299 (2015).

    Article  CAS  Google Scholar 

  13. G. Zhang, S. Sun, R. Li, and X. Sun: New insight into the conventional replacement reaction for the large-scale synthesis of various metal nanostructures and their formation mechanism. Chem. Eur. J. 16, 10630 (2010).

    Article  CAS  Google Scholar 

  14. E.A. You, R.W. Ahn, H.L. Min, M.R. Raja, T.V. O’Halloran, and T.W. Odom: Size control of arsenic trioxide nanocrystals grown in nanowells. J. Am. Chem. Soc. 131, 10863 (2009).

    Article  CAS  Google Scholar 

  15. A. Pal, S. Saha, S.K. Maji, M. Kundu, and A. Kundu: Wet-chemical synthesis of spherical arsenic nanoparticles by a simple reduction method and its characterization. Adv. Mater. Lett. 3, 177 (2012).

    Article  Google Scholar 

  16. A. Pal, S. Saha, S.K. Maji, R. Sahoo, M. Kundu, and A. Kundu: Galvanic replacement of As(0) nanoparticles by Au(III) for nanogold fabrication and SERS application. New J. Chem. 38, 1675 (2014).

    Article  CAS  Google Scholar 

  17. R. Sahoo, S. Dutta, M. Pradhan, C. Ray, A. Roy, T. Pal, and A. Pal: Arsenate stabilized Cu2O nanoparticle catalyst for one-electron transfer reversible reaction. Dalt. Trans. 43, 6677 (2014).

    Article  CAS  Google Scholar 

  18. S. Saha, A. Pal, S. Kundu, S. Basu, and T. Pal: Photochemical green synthesis of calcium-alginate-stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction. Langmuir 26, 2885 (2010).

    Article  CAS  Google Scholar 

  19. P. Mahamallik and A. Pal: A soft-template mediated approach for Au(0) formation on a heterosilica surface and synergism in the catalytic reduction of 4-nitrophenol. RSC Adv. 5, 78006 (2015).

    Article  CAS  Google Scholar 

  20. T. Aditya, A. Pal, and T. Pal: Nitroarene reduction: a trusted model reaction to test nanoparticle catalysts. Chem. Commun. 51, 9410 (2015).

    Article  CAS  Google Scholar 

  21. T. Ma, W. Yang, S. Liu, H. Zhang, and F. Liang: A comparison reduction of 4-nitrophenol by gold nanospheres and gold nanostars. Catalysts 7, 38 (2017).

    Article  Google Scholar 

  22. J. Zeng, Q. Zhang, J. Chen, and Y. Xia: A comparison study of the catalytic properties of Au-based nanocages, nanoboxes, and nanoparticles. Nano Lett. 10, 30 (2010).

    Article  CAS  Google Scholar 

  23. R. He, Y.C. Wang, X. Wang, Z. Wang, G. Liu, W. Zhou, L. Wen, Q. Li, X. Wang, X. Chen, J. Zeng, and J.G. Hou: Facile synthesis of pentacle gold-copper alloy nanocrystals and their plasmonic and catalytic properties. Nat. Commun. 5, 1 (2014).

    Google Scholar 

  24. Y.S. Seo, E.-Y. Ahn, J. Park, T.Y. Kim, J.E. Hong, K. Kim, Y. Park, and Y. Park: Catalytic reduction of 4-nitrophenol with gold nanoparticles synthesized by caffeic acid. Nanoscale Res. Lett. 12, 7 (2017).

    Article  Google Scholar 

  25. S.S. Dash and B.G. Bag: Synthesis of gold nanoparticles using renewable Punica granatum juice and study of its catalytic activity. Appl. Nanosci. 4, 55 (2014).

    Article  CAS  Google Scholar 

  26. X. Wu, C. Lu, Z. Zhou, G. Yuan, R. Xiong, and X. Zhang: Green synthesis and formation mechanism of cellulose nanocrystal-supported gold nanoparticles with enhanced catalytic performance. Environ. Sci. Nano. 1, 71 (2014).

    Article  CAS  Google Scholar 

  27. M. Mukhopadhyay and P. Dauthal: Prunus domestica fruit extract mediated synthesis of gold nanoparticles and its catalytic activity for 4–nitrophenol reduction. Ind. Eng. Chem. Res. 51, 13014 (2012).

    Article  Google Scholar 

  28. S.K. Das, C. Dickinson, F. Lafir, D.F. Brougham, and E. Marsili: Synthesis, characterization and catalytic activity of gold nanoparticles biosynthesized with Rhizopus oryzae protein extract. Green Chem. 14, 1322 (2012).

    Article  CAS  Google Scholar 

  29. Z. Gao, R. Su, R. Huang, W. Qi, and Z. He: Glucomannan-mediated facile synthesis of gold nanoparticles for catalytic reduction of 4-nitrophenol. Nanoscale Res. Lett. 9, 1 (2014).

    Article  Google Scholar 

  30. J. Lee, J.C. Park, and H. Song: A nanoreactor framework of a Au@SiO2 yolk/shell structure for catalytic reduction of p-nitrophenol. Adv. Mater. 20, 1523 (2008).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank IIT Kharagpur for the instrumental facilities and financial support. We would also thank Prof. N. Sarkar of Chemistry Department, IIT Kharagpur for providing the DLS facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjali Pal.

Supplementary materials

Supplementary materials

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2018.214

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalyan, I., Pal, T. & Pal, A. Time and temperature dependent formation of hollow gold nanoparticles via galvanic replacement reaction of As(0) and its catalytic application. MRS Communications 9, 270–279 (2019). https://doi.org/10.1557/mrc.2018.214

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.214

Navigation