Skip to main content
Log in

Enhanced tunneling electroresistance effect in composite ferroelectric tunnel junctions with asymmetric electrodes

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Theoretical investigations on ferroelectric tunnel junctions (FTJs) with asymmetric electrodes and a composite barrier are presented. A large tunneling electroresistance effect exists for the Pt/SrTi03/BaTi03/SrRu03 junction; on the other hand, exchange of the dielectric and ferroelectric layer stacking sequence can seriously degrade the performance. These correlations are rationalized by the proposed concept of an asymmetry factor, defined as the ratio between the average barrier heights of FTJs for two opposite polarization orientations. We show that a large asymmetry factor is beneficial to FTJs. This work may provide a way to enhance the performance of FTJs by structure engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  1. T. Tybell, C. Ahn, and J-M. Triscone: Ferroelectricity in thin perovskite films. Appl. Phys. Lett. 75, 856 (1999).

    Article  CAS  Google Scholar 

  2. D.D. Fong, G.B. Stephenson, S.K. Streiffer, J.A. Eastman, O. Auciello, P.H. Fuoss, and C. Thompson: Ferroelectricity in ultrathin perovskite films. Science 304, 1650 (2004).

    Article  CAS  Google Scholar 

  3. J. Junquera and Ph Ghosez: Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 422, 506 (2003).

    Article  CAS  Google Scholar 

  4. M.Y. Zhuravlev, R.F. Sabirianov, S.S. Jaswal, and E.Y. Tsymbal: Giant electroresistance in ferroelectric tunnel junctions. Phys. Rev. Lett. 94, 246802 (2005).

    Article  Google Scholar 

  5. J.R. Contreras, H. Kohlstedt, U. Poppe, R. Waser, C. Buchal, and N.A. Pertsev: Resistive switching in metal-ferroelectric-metal junctions. Appl. Phys. Lett. 83, 4595 (2003).

    Article  Google Scholar 

  6. M.Ye Zhuravlev, Y. Wang, S. Maekawa, and E.Y. Tsymbal: Tunneling electroresistance in ferroelectric tunnel junctions with a composite barrier. Appl. Phys. Lett. 95, 052902 (2009).

    Article  Google Scholar 

  7. P. Sun, Y.Z. Wu, T. Yi Cai, and S. Ju: Effects of ferroelectric dead layer on the electron transport in ferroelectric tunneling junctions. Appl. Phys. Lett. 99, 052901 (2011).

    Article  Google Scholar 

  8. Z. Wen, C. Li, D. Wu, A.D. Li, and N.B. Ming: Ferroelectric field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions. Nat Mater. 12, 617 (2013).

    Article  CAS  Google Scholar 

  9. X. Liu, J.D. Burton, and E.Y. Tsymbal: Enhanced tunneling electroresistance in ferroelectric tunnel junctions due to the reversible metallization of the barrier. Phys. Rev. Lett. 116, 197602 (2016).

    Article  Google Scholar 

  10. W.J. Hu, Z.H. Wang, W.L. Yu, and T. Wu: Optically controlled electroresistance and electrically controlled photovoltage in ferroelectric tunnel junctions. Nat Commun. 7, 10808 (2016).

    Article  CAS  Google Scholar 

  11. T. Li, P. Sharma, A. Lipatov, H. Lee, J.W. Lee, M.Y. Zhuravlev, T.R. Paudel, Y.A. Genenko, C.B. Eom, E.Y. Tsymbal, A. Sinitskii, and A. Gruverman: Polarization-mediated modulation of electronic and transport properties of hybrid moS2-BaTi03-SrRu03 tunnel junctions. Nano Lett. 17, 922 (2017).

    Article  CAS  Google Scholar 

  12. H. Yamada, V. Garcia, S. Fusil, S. Boyn, M. Marinova, A. Gloter, S. Xavier, J. Grollier, E. Jacquet, C. Carrétéro, C. Deranlot, M. Bibes, and A. Barthélémy: Giant electroresistance of super-tetragonal BiFe03-based ferroelectric tunnel junctions. ACS Nano 7, 5385 (2013).

    Article  CAS  Google Scholar 

  13. Q.H. Qin, L. Akaslompolo, N. Tuomisto, L. Yao, S. Majumdar, J. Vijayakumar, A. Casiraghi, S. Inkinen, B. Chen, A. Zugarramurdi, M. Puska, and S. van Dijken: Resistive switching in all-oxide ferroelectric tunnel junctions with ionic interfaces. Adv. Mater. 28, 6852 (2016).

    Article  CAS  Google Scholar 

  14. Z.J. Ma, T.J. Zhang, R.K. Pan, M.G. Duan, and M. He: Optimal dielectric thickness for ferroelectric tunnel junctions with a composite barrier. J. Appl. Phys. 111, 074311 (2012).

    Article  Google Scholar 

  15. Y.Z. Wu, S. Ju, and Z.Y. Li: Effects of electrodes and space charges on the tunneling electroresistance in the ferroelectric tunnel junction with a SrTi03/BaTi03 composite barrier. Appl. Phys. Lett. 96, 252905 (2010).

    Article  Google Scholar 

  16. N.M. Caffrey, T. Archer, I. Rungger, and S. Sanvito: Coexistance of giant tunneling electroresistance and magnetoresistance in an all-oxide composite magnetic tunnel junction. Phys. Rev. Lett. 109, 226803 (2012).

    Article  Google Scholar 

  17. J.J. Ruan, X.B. Qiu, Z.S. Yuan, D.X. Ji, P. Wang, A.D. Li, and D. Wu: Improved memory functions in multiferroic tunnel junctions with a dielectric/ferroelectric composite barrier. Appl. Phys. Lett. 107, 232902 (2015).

    Article  Google Scholar 

  18. L. Wang, M.R. Cho, Y.J. Shin, J.R. Kim, S. Das, J.-G. Yoon, J-S. Chung, and T.W. Noh: Overcoming the fundamental barrier thickness limits of ferroelectric tunnel junctions through BaTi03/SrTi03 composite barriers. Nano Lett. 16, 3911 (2016).

    Article  CAS  Google Scholar 

  19. A. Sokolov, O. Bak, H. Lu, S. Li, E.Y. Tsymbal, and A. Gruverman: Effect of epitaxial strain on tunneling electroresistance in ferroelectric tunnel junctions. Nanotechnology 26, 305202 (2015).

    Article  CAS  Google Scholar 

  20. G. Radaelli, D. Gutierrez, M.D. Qian, I. Fina, F. Sanchez, L. Baldrati, J. Heidler, C. Piamonteze, R. Bertacco, and J. Fontcuberta: Strain-controlled responsiveness of slave half-doped manganite La0.5Sr0.5Mn03 Layers Inserted in BaTi03 Ferroelectric Tunnel Junctions. Adv. Electron. Mater. 2, 1600368 (2016).

    Article  Google Scholar 

  21. X. Luo, B. Wang, and Y. Zheng: Tunable tunneling electroresistance in ferroelectric tunnel junctions by mechanical loads. ACS Nano 5, 1649 (2011).

    Article  CAS  Google Scholar 

  22. W.J. Chen, Y. Zheng, X. Luo, B. Wang, and C.H. Woo: Ab initio study on the size effect of symmetric and asymmetric ferroelectric tunnel junctions: A comprehensive picture with regard to the details of electrode/ferroelectric interfaces. J. Appl. Phys. 114, 064105 (2013).

    Article  Google Scholar 

  23. G.L. Jiang, W.J. Chen, B. Wang, J. Shao, and Y. Zheng: Diverse polarization bi-stability in ferroelectric tunnel junctions due to the effects of the electrode and strain: an ab initio study. Phys. Chem. Chem. Phys. 19, 20147 (2017).

    Article  CAS  Google Scholar 

  24. Y. Zheng and C.H. Woo: Giant piezoelectric resistance in ferroelectric tunnel junctions. Nanotechnology 20, 075401 (2009).

    Article  Google Scholar 

  25. H.F. Li, Y. Zheng, W.J. Chen, B. Wang, and G.H. Zhang: Interfacial Nb-substitution induced anomalous enhancement of polarization and conductivity in BaTi03 ferroelectric tunnel junctions. AlP. Adv. 4, 127148 (2014).

    Google Scholar 

  26. S. Boyn, J. Grollier, G. Lecerf, B. Xu, N. Locatelli, S. Fusil, S. Girod, C. Carrétéro, K. Garcia, S. Xavier, J. Tomas, L. Bellaiche, M. Bibes, A. Barthélémy, S. Sai’ghi, and V. Garcia: Learning through ferroelectric domain dynamics in solid-state synapses. Nat. Commun. 8, 14736 (2017).

    Article  CAS  Google Scholar 

  27. R. Guo, Y.X. Zhou, L.J. Wu, Z.R. Wang, Z. Lim, X.B. Yan, W.N. Lin, H. Wang, H.Y. Yoong, S.H. Chen, Ariando, T. Venkatesan, J. Wang, G.M. Chow, A. Gruverman, X.S. Miao, Y.M. Zhu, and J.S. Chen: Control of synaptic plasticity learning of ferroelectric tunnel memristor by nano-scale interface engineering. ACS Appl. Mat. Interfaces 10, 12862 (2018).

    Article  CAS  Google Scholar 

  28. S-C. Chang, A. Naeemi, D.E. Nikonov, and A. Gruverman: Theoretical approach to electroresistance in ferroelectric tunnel junctions. Phys. Rev. Appl. 7, 024005 (2017).

    Article  Google Scholar 

  29. N.W. Ashcroft and N.D. Mermin: Solid State Physics (Saunders College Publishing, New York, USA, 1976), p. 342.

    Google Scholar 

  30. C.B. Duke: Tunneling in Solids (Academic, New York, USA, 1999).

    Google Scholar 

  31. M.Q. Cai, Y. Zheng, P.W. Ma, and C.H. Woo: Vanishing critical thickness in asymmetric ferroelectric tunnel junctions: First principle simulations. J. Appl. Phys. 109, 024103 (2011).

    Article  Google Scholar 

  32. D.J. Kim, J.Y. Jo, Y.S. Kim, Y.J. Chang, J.S. Lee, Jong-Gul Yoon, T.K. Song, and T.W. Noh: Polarization relaxation induced by a depolarization field in ultrathin ferroelectric BaTi03 capacitor. Phys. Rev. Lett. 95, 237602 (2005).

    Article  CAS  Google Scholar 

  33. C. Kittel: Introduction to Solid State Physics, 8th ed. (Wiley, New York, USA, 2005), p. 140.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11574073 and 51472037). Nagarajan Valanoor acknowledges support from ARC Discovery Project and BAYU Overseas Talent Plan 2016.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. J. Zhang or N. Valanoor.

Additional information

This author was an editor of this journal during the review and decision stage. For the MRS policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts.

Supplementary materials

Supplementary materials

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2018.212.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Z.J., Li, L.Q., Liang, K. et al. Enhanced tunneling electroresistance effect in composite ferroelectric tunnel junctions with asymmetric electrodes. MRS Communications 9, 258–263 (2019). https://doi.org/10.1557/mrc.2018.212

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.212

Navigation