Skip to main content
Log in

Carbon-chain inserting effect on electronic behavior of single-walled carbon nanotubes: a density functional theory study

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

By inserting a carbon chain, the geometric structure and electronic properties of carbon nanotube (CNT) would undergo a significant change. Numerous studies have conducted to experimentally find the insertion effect of carbon chains on CNTs. This paper in a theoretical way studied the geometry of carbon chains inserted CNTs and analyzed the mechanism for conductivity change after insertion of carbon chains. Results indicate that carbon chains in the innermost channel of the tube are effective methods for transforming the electrical properties of the CNT, leading to the redistribution of electron and thereby causing the conductivity change in obtained configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Y.B. Yan, J.W. Miao, Z.H. Yang, F.X. Xiao, H.B. Yang, B. Liu, and Y. H. Yang: Carbon nanotube catalysts: recent advances in synthesis, characterization and applications. Chem. Soc. Rev. 44, 3295 (2015).

    Article  CAS  Google Scholar 

  2. X. Fan, L. Liu, J. Lin, Z. Shen, and J.L. Kuo: Density functional theory study of finite carbon chains. ACS Nano 11, 3788 (2009).

    Article  Google Scholar 

  3. N.F. Andrade, T.L. Vasconcelos, C.P. Gouvea, B.S. Archanjo, C.A. Achete, Y.A. Kim, M. Endo, C. Fantini, M.S. Dresselhaus, and A.G. Souza Filho: Linear carbon chains encapsulated in multiwall carbon nanotubes: resonance Raman spectroscopy and transmission electron microscopy studies. Carbon 90, 172 (2015).

    Article  CAS  Google Scholar 

  4. X. Zhao, Y. Ando, Y. Liu, M. Jinno, and T. Suzuki: Carbon nanowire made of a long linear carbon chain inserted inside a multiwalled carbon nanotube. Phys. Rev. Lett. 18, 187401 (2003).

    Article  Google Scholar 

  5. V. Scuderi, S. Scalese, S. Bagiante, G. Compagnini, L. D’Urso, and V. Privitera: Direct observation of the formation of linear C chain/carbon nanotube hybrid systems. Carbon 47, 2134 (2009).

    Article  CAS  Google Scholar 

  6. L. Shi, P. Rohringer, K. Suenaga, Y. Niimi, J. Kotakoski, J.C. Meyer, H. Peterlik, M. Wanko, S. Cahangirov, and A. Rubio: Confined linear carbon chains as a route to bulk carbyne. Nat. Mater. 15, 634 (2016).

    Article  CAS  Google Scholar 

  7. L.M. Sheng, A.J. Jin, L.M. Yu, K. An, Y. Ando, and X.L. Zhao: A simple and universal method for fabricating linear carbon chains in multiwalled carbon nanotubes. Mater. Lett. 81, 222 (2012).

    Article  CAS  Google Scholar 

  8. X.X. Zhang, H. Cui, J. Zhang, and J. Tang: Adsorption characteristic of Pd-4 cluster carbon nanotube towards transformer oil dissolved components: a simulation. Appl. Surf. Sci. 419, 802 (2017).

    Article  CAS  Google Scholar 

  9. M.H. Dahan and M.C. Toroker: Water oxidation catalysis with Fe2O3 constrained at the nanoscale. J. Phys. Chem. C 121, 6120 (2017).

    Article  CAS  Google Scholar 

  10. Z.K. Horastani, S. Javad Hashemifar, S. Masoud Sayedi, and M. Hossein Sheikhi: First-principles study of H2 adsorption on the pristine and oxidized (8,0) carbon nanotube. Int. J. Hydrog. Energy 38, 13680 (2013).

    Article  Google Scholar 

  11. X.X. Zhang, Z.Q. Dai, L. Wei, and X. Wu: Theoretical calculation of the gas-sensing properties of Pt-decorated carbon nanotubes. Sensors 13, 15159 (2013).

    Article  CAS  Google Scholar 

  12. M. Bastos and I. Camps: First-principles calculations of nickel, cadmium, and lead adsorption on a single-walled (10,0) carbon nanotube. J. Mol. Model. 20, 2094 (2014).

    Article  Google Scholar 

  13. X.X. Zhang, H. Cui, X.C. Dong, D.C. Chen, and J. Tang: Adsorption performance of Rh decorated SWCNT upon SF6 decomposed components based on DFT method. Appl. Surf. Sci. 420, 825 (2017).

    Article  CAS  Google Scholar 

  14. R.X. Wang, D.J. Zhang, Y.M. Zhang, and C.B. Liu: Boron-doped carbon nanotubes serving as a novel chemical sensor for formaldehyde. J. Phys. Chem. B 110, 18267 (2006).

    Article  CAS  Google Scholar 

  15. X.X. Zhang, Z.Q. Dai, Q.C. Chen, and J. Tang: A DFT study of SO2 and H2S gas adsorption on Au-doped single-walled carbon nanotubes. Phys. Scr. 89, 065803 (2014).

    Article  Google Scholar 

  16. M. Penza, R. Rossi, M. Alvisi, G. Cassano, M.A. Signore, E. Serra, and R. Giorgi: Pt- and Pd-nanoclusters functionalized carbon nanotubes networked films for sub-ppm gas sensors. Sens. Actuators B, Chem. 135, 289 (2008).

    Article  CAS  Google Scholar 

  17. A.S. Rad: Al-doped graphene as a new nanostructure adsorbent for some halomethane compounds: DFT calculations. Surf. Sci. 645, 6 (2016).

    Article  CAS  Google Scholar 

  18. K.H. Istadeh, R. Kalantarinejad, M.J. Aghaei, and M.R. Soleymani Yazdi: Computational investigation on H2S adsorption on the CNT channel of conductometric gas sensor. J. Comput. Theor. Nanosci. 10, 2708 (2013).

    Article  CAS  Google Scholar 

  19. Y. Li, M. Hodak, W.C. Lu, and J. Bernholc: Mechanisms of NH3 and NO2 detection in carbon-nanotube-based sensors: an ab initio investigation. Carbon 101, 177 (2016).

    Article  CAS  Google Scholar 

  20. M. Penza, R. Rossi, M. Alvisi, D. Suriano, and E. Serra: Pt-modified carbon nanotube networked layers for enhanced gas microsensors. Thin Solid Films 520, 959 (2011).

    Article  CAS  Google Scholar 

  21. K. Li, W. Wang, and D. Cao: Metal (Pd, Pt)-decorated carbon nanotubes for CO and NO sensing. Sens. Actuators B, Chem. 159, 171 (2011).

    Article  CAS  Google Scholar 

  22. A.S. Rad, and E. Abedini: Chemisorption of NO on Pt-decorated graphene as modified nanostructure media: a first principles study. Appl. Surf. Sci. 360, 1041 (2016).

    Article  CAS  Google Scholar 

  23. R. Moradi, S.A. Sebt, H. Karimi-Maleh, R. Sadeghi, F. Karimi, A. Bahari, and H. Arabi: Synthesis and application of FePt/CNTs nanocomposite as a sensor and novel amide ligand as a mediator for simultaneous determination of glutathione, nicotinamide adenine dinucleotide and tryptophan. Phys. Chem. Chem. Phys. 15, 5888 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by the Natural Science Foundation of China (grant no. 51674055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guibao Qiu.

Contributions and competing interests

Contributions and competing interests

H. C. performed this work and wrote this manuscript, G. Q. guided this work, while Q. L. and J. W. modified writing in order to improve its quality. All authors have no interest conflict about its submission.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, H., Li, Q., Qiu, G. et al. Carbon-chain inserting effect on electronic behavior of single-walled carbon nanotubes: a density functional theory study. MRS Communications 8, 189–193 (2018). https://doi.org/10.1557/mrc.2018.20

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.20

Navigation