Skip to main content
Log in

Graphene nanohybrids for enhanced catalytic activity and large surface area

  • Prospective Article
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Nanohybrids containing graphene and bismuth ferrite have been actively employed as efficient photo-catalysts these days owing to the low rate of charge carrier’s (e-h+) recombination, moderate surface area with a suitable range of band-gaps. We have synthesized nanohybrids of graphene oxide (GO) and doped BiFe03 using a co-precipitation method and the doping elements were lanthanum and manganese, hence called BLFMO/GO nanohybrids. The surface area of BLFMO [La = 15% increased from 6.8 m2/g (for pure) to 62.68 m2/g (in nanohybrid)]. Also, the bandgap of the BLFMO/GO nanohybrid reduced significantly up to 1.75 eV. The resulting BLFMO/GO nanohybrid represents significantly higher catalytic activity (96% in 30 min) than the pure BiFe03 (30% in 30 min).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. R. Srivastava, and B.C. Yadav: Ferrite materials: introduction, synthesis techniques, and applications as sensors. Int. J. Green Nanotechnol. 4, 141–154 (2012).

    Article  CAS  Google Scholar 

  2. M. Tsuji, Y. Wada, T. Yamamoto, T. Sano, and Y. Tamaura: CO2 decomposition by metallic phase on oxygen-deficient Ni(II)-bearing ferrite. J. Mater. Sci. Lett. 15, 156–157 (1996).

    Article  CAS  Google Scholar 

  3. J. Choung, Z. Xu, and J. Finch: Role of complexing agents in ferrite formation under ambient conditions. Ind. Eng. Chem. Res. 38, 4689–4693 (1999).

    Article  CAS  Google Scholar 

  4. A. Rondinone, A. Samia, and Z. Zhang: A chemometric approach for predicting the size of magnetic spinel ferrite nanoparticles from the synthesis conditions. J. Phys. Chem. B. 104, 7919–7922 (2000).

    Article  CAS  Google Scholar 

  5. A. Golman: Modern Ferrite Technology, 2nd ed. (Springer Science & Business Media, Pittsburgh, USA, 2006).

    Google Scholar 

  6. G. Catalan, and J.F. Scott: Physics and applications of bismuth ferrite. J. Adv. Mater. 21, 2463–2485 (2009).

    Article  CAS  Google Scholar 

  7. M. Zaleski: Thermally stimulated processes related to photochromism of scandium doped sillenites. J. Appl. Phys. 87, 4279–4284 (2000).

    Article  CAS  Google Scholar 

  8. P. Borse, U. Joshi, S. Ji, J. Jang, E. Jeong, H. Kim, and J. Lee: Band gap tuning of lead-substituted BaSn03 for visible light photocatalysis. Appl. Phys. Lett. 90, 1–3 (2007).

    Article  CAS  Google Scholar 

  9. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura: Magnetic control of ferroelectric polarization. Nature 426, 55–58 (2003).

    Article  CAS  Google Scholar 

  10. E. Nippolainen, A. Kamshilin, V. Prokoev, and T. Jaskelainen: Combined formation of a self-pumped phase-conjugate mirror and spatial subhar-monics in photorefractive sillenites. Appl. Phys. Lett. 78, 859–861 (2001).

    Article  CAS  Google Scholar 

  11. O. Roussak, and H.A. Gesse: Applied Chemistry: A Textbook for Engineers and Technologists, 2nd edn. (Springer Science & Business Media, New York, 2012).

    Google Scholar 

  12. C. Lee, X. Wei, J. Kysar, and J. Hone: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).

    Article  CAS  Google Scholar 

  13. L.A. Falkovsky: Optical properties of graphene. J. Phys: Conf. Ser 129, 1–7 (2008).

    Google Scholar 

  14. W. Choi, and J.W. Lee: Graphene: Synthesis and Applications, 1st ed. (CRC Press, Boca Raton, USA, 2016).

    Book  Google Scholar 

  15. R. Mertens: The Graphene Handbook, 2016 ed. (Iulu.com, USA, 2016).

    Google Scholar 

  16. A. M. Silva, and S.A. Carabineiro: Advances in Carbon Nanostructures. (InTech, USA, 2016).

    Book  Google Scholar 

  17. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga: Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269–272 (2001).

    Article  CAS  Google Scholar 

  18. Y. Zhang, Z.R. Tang, X.Z. Fuand, and Y.J. Xu: Ti02-graphene nanocom-posites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is Ti02-Graphene truly different from other Ti02-carbon composite materials. ACS Nano 4, 7303–7314 (2010).

    Article  CAS  Google Scholar 

  19. H. Tonga, S.X. Ouyang, Y.P. Bi, N. Umezawa, M. Oshikiri, and J.H. Ye: Nano-photocatalytic materials: possibilities and challenge. Adv. Mater. 24, 577–584 (2012).

    Google Scholar 

  20. F.K. Meng, Z.L. Hong, J. Arndt, M. Li, M.J. Zhi, F. Yang, and N.Q. Wu: Visible light photocatalytic activity of nitrogen-doped La2Ti207 nanosheets originating from band gap narrowing. Nano Res. 5, 213–221 (2012).

    Article  CAS  Google Scholar 

  21. M.Y. Zhang, C.L. Shao, J.B. Mu, X.M. Huang, Z.Y. Zhang, Z.C. Guo, P. Zhang, and Y.C. Liu: Hierarchical heterostructures of Bi2Mo06 on carbon nanofibers: controllable solvothermal fabrication and enhanced visible photocatalytic properties. J. Mater. Chem. 22, 577–584 (2012).

    Article  CAS  Google Scholar 

  22. Z.W. Seh, S.H. Liu, M. Low, S.Y. Zhang, Z.L. Liu, A. Mlayah, and M.Y. Han: Janus Au-Ti02 Photocatalysts with strong localization of plasmonic near fields for efficient visible light hydrogen generation. Adv. Mater. 24, 2310–2314 (2012).

    Article  CAS  Google Scholar 

  23. Y. Zhou, C.L. Muhich, B.T. Neltner, A.W. Weimer, and C.B. Musgrave: Growth of Pt particles on the anatase Ti02 (101) surface. J. Phys. Chem. C116, 12114–12123 (2012).

    Google Scholar 

  24. L.N. Kong, W. Chen, D.K. Ma, Y. Yang, S.S. Liu, and S.M. Huang: Size control of Au@Cu20 octahedra for excellent photocatalytic performance. J. Mater. Chem. 22, 719–724 (2012).

    Article  CAS  Google Scholar 

  25. A. Fujishima, and K. Honda: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972).

    Article  CAS  Google Scholar 

  26. V. Stengl, D. Popelkova, and P. Vlaci: Ti02-graphene nanocornposite as high performance photocatalysts. J. Phys. Chem. C 115, 25209–25218 (2011).

    Article  CAS  Google Scholar 

  27. Y.Y. Liang, H.L. Wang, H.S. Casalongue, Z. Chen, and H.J. Dai: Ti02 nanocrystals grown on graphene as advanced photocatalytic hybrid materials. Nano Res. 3, 701–705 (2010).

    Article  CAS  Google Scholar 

  28. F. Gao, X. Chen, K. Yin, S. Dong, Z. Ren, F. Yuan, Z.Z.T. Yu, and J.M. Liu: Visible-light photocatalytic properties of weak magnetic BiFe03 nanoparticles. Nature 238, 2889–2892 (1972).

    Google Scholar 

  29. J. An, L. Zhu, N. Wang, Z. Song, Z. Yang, D. Du, and H. Tang: Photo-Fenton like degradation of tetrabromobisphenol A with graphene BiFe03 composite as a catalyst. Chem. Eng. J. 219, 225–237 (2013).

    Article  CAS  Google Scholar 

  30. Z. Li, Y. Shen, C. Yang, Y. Lei, Y. Guan, Y. Lin, D. Liu, and C.W. Nan: Significant enhancement in the visible light photocatalytic properties of BiFe03-graphene nanohybrids. J. Mater. Chem. A 1, 823–829 (2013).

    Article  CAS  Google Scholar 

  31. U.A. Joshi, J.S. Jang, P.H. Borse, and J.S. Lee: Microwave synthesis of single-crystalline perovskite BiFe03 nanocubes for photoelectrode and photocatalytic applications. Appl. Phys. Lett. 92, 1–3 (2008).

    Article  CAS  Google Scholar 

  32. Q.J. Ruan, and W.D. Zhang: Tunable morphology of Bi2Fe409 crystals for photocatalytic oxidation. J. Phys. Chem. C 113, 4168–4173 (2009).

    Article  CAS  Google Scholar 

  33. S. Sun, W. Wang, L. Zhang, and M. Shang: Visible light-induced photocatalytic oxidation of phenol and aqueous ammonia in flowerlike Bi2Fe409 suspensions. J. Phys. Chem. C113, 12826–12831 (2009).

    Google Scholar 

  34. T. Soltani and M.H. Entezari: Photolysis and photocatalysis of methylene blue by ferrite bismuth nanoparticles under sunlight irradiation. J. Mol. Catal. A: Chem. 377, 197–203 (2013).

    Article  CAS  Google Scholar 

  35. T. Soltani, and M.H. Entezari: Solar photocatalytic degradation of RB5 by ferrite bismuth nanoparticles synthesized via ultrasound. Ultrason. Sonochem. 20, 1245–1253 (2013).

    Article  CAS  Google Scholar 

  36. N. Zhang, D. Chen, F. Niu, S. Wang, L. Qin, and Y. Huang: Enhanced visible light photocatalytic activity of Gd-doped BiFe03 nanoparticles and mechanism insight. Sci. Rep. 6, 1–11 (2016).

    Article  CAS  Google Scholar 

  37. S. Irfan, S. Rizwan, Y. Shen, R. Tomovska, S. Zulfiqar, M.I. Sarwar, and C.-W. Nan: Mesoporous template-free gyroid-like nanostructures based on La and Mn co-doped Bismuth ferrites with improved photocatalytic activity. RSC Adv. 6, 114183–114189 (2016).

    Article  CAS  Google Scholar 

  38. S. Irfan, S. Rizwan, Y. Shen, L. Li, A. Asfandiyar, S. Butt, and C.-W. Nan: The gadolinium (Gd3+) and tin (Sn4+) co-doped BiFe03 nanoparticles as new solar light active photocatalysts. Sci. Rep. 7, 1–12 (2017).

    Article  CAS  Google Scholar 

  39. S. Wang, D. Chen, F. Niu, N. Zhang, L. Qin, and Y. Huang: Pd cocatalyst on Sm-doped BiFe03 nanoparticles: synergetic effect of a Pd cocatalyst and samarium doping on photocatalysis. RSC Adv. 6, 34574–34584 (2016).

    Article  CAS  Google Scholar 

  40. A. Peigney, C. Laurent, E. Flahaut, R.R. Bacsa, and A. Rousset: Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon. N. Y. 39, 507–514 (2001).

    Article  CAS  Google Scholar 

  41. Q. Xiang, J. Yu, and M. Jaroniec: Graphene-based semiconductor photo-catalysts. Chem. Soc. Rev. 41, 782–796 (2012).

    Article  CAS  Google Scholar 

  42. J.F. Dai, T. Xian, L.J. Di, and H. Yang: Preparation of BiFe03-graphene nanocomposites and their enhanced photocatalytic activities. J. Nanomater. 2013, 1–5 (2013).

    Google Scholar 

  43. A. Sun, H. Chen, C. Song, F. Jiang, X. Wang, and Y. Fu: Magnetic Bi25Fe04o-graphene catalyst and its high visible-light photocatalytic performance. RSC Adv. 3, 4332–4340 (2013).

    Article  CAS  Google Scholar 

  44. H. Sun, Y. Liu, Y. Zhang, L. Lv, J. Zhou, and W. Chen: Synthesis of Bi2Fe409/reduced graphene oxide composite by one-step hydrothermal method and its high photocatalytic performance. J. Mater. Sci.: Mater. Electron. 25, 4212–4218 (2014).

    CAS  Google Scholar 

  45. Z.T. Hu, J. Liu, X. Yan, W.D. Oh, and T.T. Lim: Low-temperature synthesis of grapheme/Bi2Fe40g composite for synergistic adsorption-photocatalytic degradation of hydrophobic pollutant under solar irradiation. Chem. Eng. J. 262, 1022–1032 (2015).

    Article  CAS  Google Scholar 

  46. T. Soltani, and B.K. Lee: Sono-synthesis of nanocrystallized BiFe03/ reduced graphene oxide composites for visible photocatalytic degradation improvement of bisphenol A. Chem. Eng. J. 306, 204–213 (2016).

    Article  CAS  Google Scholar 

  47. F.G. Garcia, C.S. Riccardi, and A.Z. Simes: Lanthanum doped BiFe03 powders: syntheses and characterization. J. Alloys. Compd. 501, 25–29 (2010).

    Article  CAS  Google Scholar 

  48. G.S. Arya, and N.S. Negi: Effect of In and Mn co-doping on structural, magnetic and dielectric properties of BiFe03 nanoparticles. J. Phys. D: Appl. Phys. 46, 1–8 (2013).

    Article  CAS  Google Scholar 

  49. A. Trapalis, N. Todorova, T. Giannakopoulou, N. Boukos, T. Speliotis, D. Dimotikali, and J. Yu: Ti02/graphene composite photocatalysts for NOx removal: a comparison of surfactant stabilized graphene and reduced graphene oxide. Appl. Catal. B: Environ. 180, 637–647 (2016).

    Article  CAS  Google Scholar 

  50. Y. Li, M.S. Cao, D.W. Wang, and J. Yuan: High-efficiency and dynamic stable electromagnetic wave attenuation for La doped bismuth ferrite at elevated temperature and gigahertz frequency. RSC Adv. 5, 77184–77191 (2015).

    Article  CAS  Google Scholar 

  51. Q. Xu, Y. Sheng, M. Khalid, Y. Cao, Y. Wang, X. Qiu, W. Zhang, M. He, S. Wang, S. Zhou, Q. Li, D. Wu, Y. Zhai, W. Liu, P. Wang, Y.B. Xu, and J. Du: Magnetic interactions in BiFe0.5Mn0.503 films and BiFe03/BiMn03 superlattices. Sci. Rep. 5, 1–8 (2015).

    Google Scholar 

  52. W.B. Hu, Y. Liu, R.L. Withers, T.J. Frankcombe, L. Noren, A. Snashall, M. Kitchin, P. Smith, B. Gong, H. Chen, J. Schiemer, F. Brink, and J. Wong-Leung: Electron-pinned defect-dipoles for high-performance colossal permittivity materials. Nat. Mater. 12, 821–826 (2013).

    Article  CAS  Google Scholar 

  53. L. Shi, L. Liang, J. Ma, F. Wang, and J. Sun: Remarkably enhanced photocatalytic activity of ordered mesoporous carbon/g-C3N4 composite photocatalysts under visible light. Dalton Trans. 43, 7236–7244 (2014).

    Article  CAS  Google Scholar 

  54. G. Liao, S. Chen, X. Quan, H. Yu, and H. Zhao: Graphene oxide modified g-C3N4 hybrid with enhanced photocatalytic capability under visible light irradiation. J. Mater. Chem. 22, 2721–2726 (2012).

    Article  CAS  Google Scholar 

  55. N. Miriyala, K. Prashanthi, and T. Thundat: Oxygen vacancy dominant strong visible photoluminescence from BiFe03 nanotubes. Phys. Status Solidi RRL 7, 668–671 (2013).

    Article  CAS  Google Scholar 

  56. P. Kubelka, and F. Munk: Ein beitrag zur optik der farbanstriche. Tech. Phys. 12, 593–601 (1931).

    Google Scholar 

  57. R. Guo, L. Fang, W. Dong, F. Zheng, and M. Shen: Enhanced photocatalytic activity and ferromagnetism in Gd doped BiFe03 nanoparticles. J. Mater. Chem. C 114, 21390–21396 (2010).

    CAS  Google Scholar 

  58. N.S.A. Satar, A.W. Aziz, M.K. Yaakob, M.Z.A. Yahya, O.H. Hassan, T.I.T. Kudin, and N.H.M. Kaus: Experimental and first-principles investigations of lattice strain effect on electronic and optical properties of biotem-plated BiFe03 nanoparticles. J. Phys. Chem. C120, 26012–26020 (2016).

    Google Scholar 

Download references

Acknowledgment

The Higher Education Commission (HEC) of Pakistan funded the research activity under the Project #39/HEC/R&D/PAKUS/2017/783 and 6040/Federal/NRPU/R&D/HEC/2016 to carry out part of the research work within Pakistan. This work was also funded by benevolent support of United States Agency for International Development (USAID) under the Pakistan–U.S. Science & Technology Cooperation Program grant. The essence does not inevitably express the perspectives of the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Rizwan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fatima, S., Irfan Ali, S., Younas, D. et al. Graphene nanohybrids for enhanced catalytic activity and large surface area. MRS Communications 9, 27–36 (2019). https://doi.org/10.1557/mrc.2018.194

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.194

Navigation